Patents by Inventor Masaya Tanimoto

Masaya Tanimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079742
    Abstract: A battery includes a current collecting member connected to a power generating element housed in an outer casing with a lid, and a rivet placed outside the outer casing. The current collecting member includes a plate-shaped portion placed along the lid. The rivet includes a through part extending through the lid, and a contact part contacting a first surface of the plate-shaped portion. A part of a peripheral end portion of the contact part is joined to the first surface. An edge portion of a non-joined portion of the peripheral end portion, facing the first surface, includes a tapered surface generating a gap smaller at a position closer to the through part. The tapered surface has a maximum size of 0.1 mm or more in a direction from the peripheral end portion to the through part and 0.03 mm or more in a thickness direction of the peripheral end portion.
    Type: Application
    Filed: August 15, 2023
    Publication date: March 7, 2024
    Applicants: PRIMEARTH EV ENERGY CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventors: Keitaro MACHIDA, Masaya OGURA, Akinori KOKUBO, Yuya TANAKA, Koichi TANIMOTO
  • Patent number: 11234439
    Abstract: An imide compound represented by formula (I) [wherein R represents a fluorine atom or a hydrogen atom] has excellent control efficacies against plant diseases.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: February 1, 2022
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Masaya Tanimoto, Koichiro Dota
  • Publication number: 20210274786
    Abstract: An imide compound represented by formula (I) [wherein R represents a fluorine atom or a hydrogen atom] has excellent control efficacies against plant diseases.
    Type: Application
    Filed: August 29, 2017
    Publication date: September 9, 2021
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Masaya TANIMOTO, Koichiro DOTA
  • Patent number: 11028056
    Abstract: The present invention provides a method for industrially producing: a pyrimidine compound having pest control efficacy; 2-[4-(trifluoromethyl)phenyl]ethylamine which is a production intermediate of the pyrimidine compound; a phenylethylamine compound useful as a pharmaceutical and agrochemical intermediate; and further a 3-arylpropionamide compound and a 3-arylpropionic acid ester compound useful as production intermediates of the phenylethylamine compound. The 3-arylpropionamide compound or the 3-arylpropionic acid ester compound can be efficiently and industrially produced in a single step by reacting a compound represented by formula (1) (wherein X represents a chlorine atom or a bromine atom; and Y represents an alkyl group optionally substituted with fluorine atom(s), a hydrogen atom, a fluorine atom, a cyano group, an alkylcarbonyl group, a dialkylamino group, or the like) with acrylamide or an acrylic acid ester in the presence of a metal catalyst and a reducing agent.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 8, 2021
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shun Tanimura, Masaya Tanimoto, Koji Hagiya
  • Publication number: 20200165209
    Abstract: The present invention provides a method for industrially producing: a pyrimidine compound having pest control efficacy; 2-[4-(trifluoromethyl)phenyl]ethylamine which is a production intermediate of the pyrimidine compound; a phenylethylamine compound useful as a pharmaceutical and agrochemical intermediate; and further a 3-arylpropionamide compound and a 3-arylpropionic acid ester compound useful as production intermediates of the phenylethylamine compound. The 3-arylpropionamide compound or the 3-arylpropionic acid ester compound can be efficiently and industrially produced in a single step by reacting a compound represented by formula (1) (wherein X represents a chlorine atom or a bromine atom; and Y represents an alkyl group optionally substituted with fluorine atom(s), a hydrogen atom, a fluorine atom, a cyano group, an alkylcarbonyl group, a dialkylamino group, or the like) with acrylamide or an acrylic acid ester in the presence of a metal catalyst and a reducing agent.
    Type: Application
    Filed: May 30, 2018
    Publication date: May 28, 2020
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shun TANIMURA, Masaya TANIMOTO, Koji HAGIYA
  • Patent number: 10562885
    Abstract: A compound represented by formula (5) can be produced by simultaneously and separately adding a compound represented by formula (4) and methanesulfonyl chloride to a compound represented by formula (3) and a compound represented by formula (6) having excellent control efficacies against pests can be produced by subjecting the compound represented by formula (5) to intramolecular condensation in the presence of an acid.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: February 18, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Tomohiko Inui, Masaya Tanimoto
  • Publication number: 20200017468
    Abstract: A compound represented by formula (5) can be produced by simultaneously and separately adding a compound represented by formula (4) and methanesulfonyl chloride to a compound represented by formula (3) and a compound represented by formula (6) having excellent control efficacies against pests can be produced by subjecting the compound represented by formula (5) to intramolecular condensation in the presence of an acid.
    Type: Application
    Filed: February 21, 2018
    Publication date: January 16, 2020
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Tomohiko INUI, Masaya TANIMOTO
  • Patent number: 9919300
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: March 20, 2018
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda, Masaya Tanimoto
  • Patent number: 9765032
    Abstract: A method for producing (R)-1,1,3-trimethyl-4-aminoindane includes the following steps (A), (B), and (C). Step (A) is a step of optically resolving 1,1,3-trimethyl-4-aminoindane to obtain (R)-1,1,3-trimethyl-4-aminoindane and (S)-1,1,3-trimethyl-4-aminoindane, step (B) is a step of racemizing the (S)-1,1,3-trimethyl-4-aminoindane obtained in the step (A) or (C) to obtain 1,1,3-trimethyl-4-aminoindane, and step (C) is a step of optically resolving the 1,1,3-trimethyl-4-aminoindane obtained in the step (B) to obtain (R)-1,1,3-trimethyl-4-aminoindane and (S)-1,1,3-trimethyl-4-aminoindane.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: September 19, 2017
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Tadafumi Matsunaga, Natsuru Hiraguri, Tomoaki Takahashi, Tomohiko Inui, Masaya Tanimoto
  • Publication number: 20170166532
    Abstract: A method for producing (R)-1,1,3-trimethyl-4-aminoindane includes the following steps (A), (B), and (C). Step (A) is a step of optically resolving 1,1,3-trimethyl-4-aminoindane to obtain (R)-1,1,3-trimethyl-4-aminoindane and (S)-1,1,3-trimethyl-4-aminoindane, step (B) is a step of racemizing the (S)-1,1,3-trimethyl-4-aminoindane obtained in the step (A) or (C) to obtain 1,1,3-trimethyl-4-aminoindane, and step (C) is a step of optically resolving the 1,1,3-trimethyl-4-aminoindane obtained in the step (B) to obtain (R)-1,1,3-trimethyl-4-aminoindane and (S)-1,1,3-trimethyl-4-aminoindane.
    Type: Application
    Filed: December 26, 2014
    Publication date: June 15, 2017
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Tadafumi MATSUNAGA, Natsuru HIRAGURI, Tomoaki TAKAHASHI, Tomohiko INUI, Masaya TANIMOTO
  • Publication number: 20170036200
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Yasutoyo KAWASHIMA, Takahiro HINO, Taichi SENDA, Masaya TANIMOTO
  • Patent number: 9090527
    Abstract: A silicon-bridged Cp-Ar transition metal complex serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M represents a transition metal atom of Group 4 of the Periodic Table of the Elements; X1, X2, X3, R1, R2, R3, R4, R5, R6, R7, R8, and R9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and an aralkyloxy group having 7 to 20 carbon atoms, and wherein each of the groups may have a halogen atom as a substituent.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 28, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Masaya Tanimoto
  • Publication number: 20150105237
    Abstract: Disclosed is a catalytic component for trimerization containing a transition metal complex with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a trimerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Yasutoyo KAWASHIMA, Takahiro HINO, Taichi SENDA, Masaya TANIMOTO
  • Publication number: 20150105572
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Yasutoyo KAWASHIMA, Takahiro HINO, Taichi SENDA, Masaya TANIMOTO
  • Patent number: 8937195
    Abstract: A silicon-bridged Cp-Ar transition metal complex is provided that serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through the trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M1 represents a transition metal atom of Group 4 of the Periodic Table of the Elements; Ar1 is an aryl group represented by formula (2), Ar2 is an aryl group represented by formula (3) and Ar3 is an aryl group represented by formula (4) (not all of the three aryl groups Ar1, Ar2 and Ar3 are the same at the same time), Wherein each of the X and R groups represents hydrogen or the like.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: January 20, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Masaya Tanimoto, Hidenori Hanaoka
  • Publication number: 20140018564
    Abstract: A silicon-bridged Cp-Ar transition metal complex is provided that serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through the trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M1 represents a transition metal atom of Group 4 of the Periodic Table of the Elements; Ar1 is an aryl group represented by formula (2), Ar2 is an aryl group represented by formula (3) and Ar3 is an aryl group represented by formula (4) (not all of the three aryl groups Ar1, Ar2 and Ar3 are the same at the same time), Wherein each of the X and R groups represents hydrogen or the like.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Masaya Tanimoto, Hidenori Hanaoka
  • Publication number: 20140018565
    Abstract: A silicon-bridged Cp-Ar transition metal complex serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M represents a transition metal atom of Group 4 of the Periodic Table of the Elements; X1, X2, X3, R1, R2, R3, R4, R5, R6, R7, R8, and R9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and an aralkyloxy group having 7 to 20 carbon atoms, and wherein each of the groups may have a halogen atom as a substituent.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Taichi Senda, Masaya Tanimoto
  • Patent number: 8236908
    Abstract: A solid catalyst component for olefin polymerization comprising a titanium atom, a magnesium atom, a halogen atom, and a cycloheptapolyenedicarboxylic diester; a production method of the solid catalyst component, by contacting with one another a titanium compound, a magnesium compound, and the cycloheptapolyenedicarboxylic diester; a production method of a solid catalyst, by contacting the solid catalyst component with an organoaluminum compound; and a production method of an olefin polymer by polymerizing an olefin in the presence of the solid catalyst.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: August 7, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wataru Hirahata, Hidenori Hanaoka, Masaya Tanimoto
  • Publication number: 20120184431
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a method for economically preparing a butyl-branched ethylene polymer, even under high temperature conditions, by using said transition metal complex as an ethylene trimerization catalyst, and polymerizing ethylene in the presence of an olefin polymerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda, Masaya Tanimoto
  • Publication number: 20110269927
    Abstract: A solid catalyst component for olefin polymerization comprising a titanium atom, a magnesium atom, a halogen atom, and a cycloheptapolyenedicarboxylic diester; a production method of the solid catalyst component, by contacting with one another a titanium compound, a magnesium compound, and the cycloheptapolyenedicarboxylic diester; a production method of a solid catalyst, by contacting the solid catalyst component with an organoaluminum compound; and a production method of an olefin polymer by polymerizing an olefin in the presence of the solid catalyst.
    Type: Application
    Filed: April 5, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Wataru HIRAHATA, Hidenori HANAOKA, Masaya TANIMOTO