Patents by Inventor Masayasu Kuwahara

Masayasu Kuwahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11643660
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1). In the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 is an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 9, 2023
    Assignees: NEC SOLUTION INNOVATORS, LTD., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Publication number: 20220213525
    Abstract: A nucleic acid detection kit including: (i) a first single-stranded circular DNA; (ii) a first oligonucleotide primer; (iii) a second single-stranded circular DNA; and (iv) a second oligonucleotide primer; wherein the first oligonucleotide primer is hound to a carrier through the 5?-end thereof, and the second oligonucleotide primer is bound, through the 5?-end thereof, to the carrier to which the first oligonucleotide primer is hound.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 7, 2022
    Applicant: Nihon University
    Inventors: Masayasu KUWAHARA, Hiroto FUJITA
  • Patent number: 11359240
    Abstract: A method of detecting a target molecule, the method comprising: forming a complex of a target molecule, a capture oligonucleotide, an oligonucleotide primer, and a single-stranded circular DNA; performing a nucleic acid amplification reaction by rolling circle amplification based on the formation of the complex; and detecting amplified nucleic acid; wherein the single-stranded circular DNA contains a first region, and a second region linked to the 3?-side of the first region, and preferably further contains a sequence complementary to a detection reagent-binding sequence; the primer contains a first aptamer sequence which binds to the target molecule, and a sequence which is linked to the 3?-side of the first aptamer sequence and is complementary to the first region of the single-stranded circular DNA; and the capture oligonucleotide contains a sequence complementary to the second region of the single-stranded circular DNA, and a second aptamer sequence which is linked to the 3?-side of the sequence complemen
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: June 14, 2022
    Assignee: National University Corporation Gunma University
    Inventor: Masayasu Kuwahara
  • Patent number: 11236342
    Abstract: The present invention provides a novel molecule that can be used for detection of sIgA. The sIgA-binding nucleic acid molecule of the present invention is characterized in that it binds to secretory immunoglobulin A (sIgA) with a dissociation constant of 37.7 nM or less, and preferably includes a polynucleotide consisting of any of base sequences of SEQ ID NOs: 1 to 12 or a partial sequence thereof, for example. According to the sIgA-binding nucleic acid molecule of the present invention, it is possible to detect sIgA in saliva.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: February 1, 2022
    Assignees: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Publication number: 20210262015
    Abstract: A method for detecting a gene mutation(s), the method comprising the steps of: hybridizing a single-stranded circular DNA and a primer with a target polynucleotide containing a first region and a second region adjacent to the 3?-side of the first region and containing a mutation; performing a nucleic acid amplification reaction by rolling circle amplification based on formation of a complex of the target polynucleotide, the primer, and the single-stranded circular DNA; and detecting amplified nucleic acid with a detection reagent. In this method, the single-stranded circular DNA contains a sequence complementary to the first region of the target polynucleotide, a primer-binding sequence adjacent to the 5?-side thereof, and preferably a sequence complementary to a detection reagent-binding sequence.
    Type: Application
    Filed: June 1, 2017
    Publication date: August 26, 2021
    Inventor: Masayasu Kuwahara
  • Patent number: 10781230
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: September 22, 2020
    Assignees: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Patent number: 10760084
    Abstract: The present invention provides a novel nucleic acid molecule that can be used for detection of ?-amylase. The ?-amylase-binding nucleic acid molecule of the present invention is characterized in that it binds to ?-amylase with a dissociation constant of 17 nM or less, and preferably includes a polynucleotide consisting of any of base sequences of SEQ ID NOs: 1 to 22, for example. According to the nucleic acid molecule of the present invention, it is possible to detect ?-amylase in saliva.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 1, 2020
    Assignees: NEC Solution Innovators, Ltd., Gunma University
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Ikuo Shiratori, Iwao Waga, Masayasu Kuwahara
  • Patent number: 10662216
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: May 26, 2020
    Assignees: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Patent number: 10618928
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 14, 2020
    Assignees: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Patent number: 10611791
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 7, 2020
    Assignees: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka Minagawa, Katsunori Horii, Jou Akitomi, Naoto Kaneko, Iwao Waga, Masayasu Kuwahara
  • Patent number: 10597719
    Abstract: An RNA detection kit comprising: (i) a single-stranded circular DNA template containing: a sequence of 10 to 30 bases complementary to a first portion of a target RNA; a primer-binding sequence of 7 to 8 bases adjacent to 5?-side thereof; and a sequence complementary to a detection reagent-binding sequence such as a guanine quadruplex-forming sequence; (ii) an oligonucleotide primer containing: a sequence of 8 to 15 bases complementary to a second portion adjacent to the 3?-side of the first portion of the target RNA; and a sequence of 7 to 8 bases adjacent to 3?-side thereof and complementary to the primer-binding sequence of the single-stranded circular DNA template; and (iii) a detection reagent such as a guanine quadruplex-binding reagent; is provided.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: March 24, 2020
    Assignee: National University Corporation Gunma University
    Inventor: Masayasu Kuwahara
  • Publication number: 20200071759
    Abstract: A method of detecting a target molecule, the method comprising: forming a complex of a target molecule, a capture oligonucleotide, an oligonucleotide primer, and a single-stranded circular DNA; performing a nucleic acid amplification reaction by rolling circle amplification based on the formation of the complex; and detecting amplified nucleic acid; wherein the single-stranded circular DNA contains a first region, and a second region linked to the 3?-side of the first region, and preferably further contains a sequence complementary to a detection reagent-binding sequence; the primer contains a first aptamer sequence which binds to the target molecule, and a sequence which is linked to the 3?-side of the first aptamer sequence and is complementary to the first region of the single-stranded circular DNA; and the capture oligonucleotide contains a sequence complementary to the second region of the single-stranded circular DNA, and a second aptamer sequence which is linked to the 3?-side of the sequence complemen
    Type: Application
    Filed: March 14, 2018
    Publication date: March 5, 2020
    Inventor: Masayasu Kuwahara
  • Publication number: 20190382765
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1). In the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 is an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Application
    Filed: October 12, 2017
    Publication date: December 19, 2019
    Applicants: NEC Solution Innovators, Ltd., National University Corporation Gunma University
    Inventors: Hirotaka MINAGAWA, Katsunori HORII, Jou AKITOMI, Naoto KANEKO, Iwao WAGA, Masayasu KUWAHARA
  • Patent number: 10385090
    Abstract: Disclosed is a nucleoside derivative of formulae (I-1) or a salt thereof: in which R1, R2, R3, R5, A1 to A3, B, X, Y, and k are described herein. Also provided are a 5?-phosphate ester and a 3?-phosphoramidite derivative of the nucleoside derivative and substrate solutions thereof. A polynucleotide is produced using the 5?-phosphate ester or 3?-phosphoramidite derivative of the nucleoside derivative. A library of the produced polynucleotide is used in a method of selecting a nucleic acid aptamer. Further provided is a vesicular endothelial growth factor binding agent of formula (i).
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 20, 2019
    Assignee: NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventor: Masayasu Kuwahara
  • Publication number: 20190248826
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Application
    Filed: September 14, 2017
    Publication date: August 15, 2019
    Applicants: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka MINAGAWA, Katsunori HORII, Jou AKITOMI, Naoto KANEKO, Iwao WAGA, Masayasu KUWAHARA
  • Publication number: 20190241895
    Abstract: The present invention provides a novel molecule that can be used for detection of sIgA. The sIgA-binding nucleic acid molecule of the present invention is characterized in that it binds to secretory immunoglobulin A (sIgA) with a dissociation constant of 37.7 nM or less, and preferably includes a polynucleotide consisting of any of base sequences of SEQ ID NOs: 1 to 12 or a partial sequence thereof, for example. According to the sIgA-binding nucleic acid molecule of the present invention, it is possible to detect sIgA in saliva.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 8, 2019
    Applicants: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka MINAGAWA, Katsunori HORII, Jou AKITOMI, Naoto KANEKO, Iwao WAGA, Masayasu KUWAHARA
  • Publication number: 20190211048
    Abstract: The present invention provides a novel nucleoside derivative or a salt thereof, a polynucleotide synthesis reagent, a method for producing a polynucleotide, a polynucleotide, and a method for producing a binding nucleic acid molecule. The nucleoside derivative or a salt thereof of the present invention is represented by the following chemical formula (1): where in the chemical formula (1), Su is an atomic group having a sugar skeleton at a nucleoside residue or an atomic group having a sugar phosphate skeleton at a nucleotide residue, and may or may not have a protecting group, L1 and L2 are each independently a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms, X1 and X2 are each independently an imino group (—NR1—), an ether group (—O—), or a thioether group (—S—), and the R1 is a hydrogen atom or a straight-chain or branched, saturated or unsaturated hydrocarbon group having 2 to 10 carbon atoms.
    Type: Application
    Filed: September 14, 2017
    Publication date: July 11, 2019
    Applicants: NEC Solution Innovators, Ltd., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventors: Hirotaka MINAGAWA, Katsunori HORII, Jou AKITOMI, Naoto KANEKO, Iwao WAGA, Masayasu KUWAHARA
  • Publication number: 20190040465
    Abstract: An RNA detection kit comprising: (i) a single-stranded circular DNA template containing: a sequence of 10 to 30 bases complementary to a first portion of a target RNA; a primer-binding sequence of 7 to 8 bases adjacent to 5?-side thereof; and a sequence complementary to a detection reagent-binding sequence such as a guanine quadruplex-forming sequence; (ii) an oligonucleotide primer containing: a sequence of 8 to 15 bases complementary to a second portion adjacent to the 3?-side of the first portion of the target RNA; and a sequence of 7 to 8 bases adjacent to 3?-side thereof and complementary to the primer-binding sequence of the single-stranded circular DNA template; and (iii) a detection reagent such as a guanine quadruplex-binding reagent; is provided.
    Type: Application
    Filed: March 23, 2016
    Publication date: February 7, 2019
    Inventor: Masayasu Kuwahara
  • Publication number: 20180327746
    Abstract: The present invention provides a novel nucleic acid molecule that can be used for detection of ?-amylase. The ?-amylase-binding nucleic acid molecule of the present invention is characterized in that it binds to ?-amylase with a dissociation constant of 17 nM or less, and preferably includes a polynucleotide consisting of any of base sequences of SEQ ID NOs: 1 to 22, for example. According to the nucleic acid molecule of the present invention, it is possible to detect ?-amylase in saliva.
    Type: Application
    Filed: September 12, 2016
    Publication date: November 15, 2018
    Applicants: NEC Solution Innovators, Ltd., Gunma University
    Inventors: Hirotaka MINAGAWA, Katsunori HORII, Jou AKITOMI, Naoto KANEKO, Ikuo SHIRATORI, Iwao WAGA, Masayasu KUWAHARA
  • Publication number: 20160311845
    Abstract: A nucleoside derivative represented by any of the following formulae (I-1) to (I-6) or a salt thereof: in the formulae (I-1) to (I-6), R1 to R5, A1 to A3, B, X, Y, and k represent the meanings as described in claim 1.
    Type: Application
    Filed: September 10, 2014
    Publication date: October 27, 2016
    Applicant: NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
    Inventor: Masayasu KUWAHARA