Patents by Inventor Masazumi Tanoura

Masazumi Tanoura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9243939
    Abstract: A flow volume measurement device or a flow velocity measurement device include a measurement cell including a main pipe, an incident tube that is connected to the main pipe, an emission tube that is connected to the main pipe, and a first purge-fluid supply tube that is connected to the incident tube, a purge-fluid supply unit that supplies purge fluid into the first purge-fluid supply tube of the measurement cell, a light emitting unit that emits a laser beam to the measurement cell, a light receiving unit that receives the laser beam emitted from the light emitting unit and having passed through the measurement cell, and outputs a received amount of light as a light reception signal, a calculation unit that calculates a flow volume or a flow velocity of exhaust fluid flowing in the measurement cell, based on a light reception signal output from the light receiving unit.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 26, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Atsushi Takita, Minoru Danno, Shinichiro Asami, Kageharu Moriyama, Daishi Ueno, Ichiro Awaya, Tadashi Aoki
  • Patent number: 9211496
    Abstract: An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: December 15, 2015
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., LTD.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 9051863
    Abstract: An object of the present invention is to provide a flue gas purifying device that can efficiently decrease nitrogen oxides in flue gas.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 9, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki, Kageharu Moriyama
  • Patent number: 8967996
    Abstract: The combustion controller controls the fuel and air that are supplied to the combustion furnace for burning substances, and addresses the aforementioned object by including: fuel supply unit for supplying fuel and air into the combustion furnace; air supply unit for supplying air into the combustion furnace, the air supply unit being disposed downstream of the fuel supply unit in the direction of flow of combustion air; concentration measuring unit for measuring the concentration of hydrogen sulfide of the combustion air by passing a measurement beam of light through the combustion air at a measurement position downstream of the fuel supply unit in the direction of flow of the combustion air; and control unit for controlling the amount of air supplied from the fuel supply unit based on a measurement result provided by the concentration measuring unit.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Kenji Muta, Shinichiro Asami, Eiji Kato, Tadashi Aoki, Koutaro Fujimura, Tetsuya Sawatsubashi, Chisato Tsukahara, Shinsaku Dobashi
  • Patent number: 8895318
    Abstract: An ammonia compound concentration measuring device includes: a pipe unit through which the circulating gas flows; a converter which is disposed in the pipe unit and converts an ammonia compound into ammonia; a measurement device which measures a first measurement value as a concentration of ammonia contained in a first circulating gas flowing inside a pipe line passing through the converter in the circulating gas flowing inside the pipe unit and a second measurement value as a concentration of ammonia contained in a second circulating gas flowing inside a pipe line not passing through the converter in the circulating gas flowing inside the pipe unit; and a controller which controls operations of the pipe unit and the measurement device and calculates the concentration of the ammonia compound of the measurement subject contained in the circulating gas from a difference between the first measurement value and the second measurement value.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 25, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsushi Takita, Masazumi Tanoura, Kenji Muta, Shinichiro Asami, Kageharu Moriyama
  • Publication number: 20140056792
    Abstract: An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
    Type: Application
    Filed: October 29, 2013
    Publication date: February 27, 2014
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 8607547
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by a flue gas purifying device including: an exhaust pipe; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalytic unit that includes a urea SCR catalyst that promotes a reaction between ammonia and nitrogen oxides and a support mechanism that supports the urea SCR catalyst in the exhaust pipe, and is arranged on a downstream side to a position where urea water is injected; a concentration measuring unit arranged on a downstream side to the catalytic unit in a flow direction of flue gas to measure an ammonia concentration in flue gas having passed through the urea SCR catalyst; and a control unit that controls injection of urea water by the urea-water injecting unit based on an ammonia concentration measured by the concentration measuring unit.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: December 17, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Patent number: 8597418
    Abstract: An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 3, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 8506683
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: August 13, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8468807
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Publication number: 20130157377
    Abstract: An ammonia compound concentration measuring device includes: a pipe unit through which the circulating gas flows; a converter which is disposed in the pipe unit and converts an ammonia compound into ammonia; a measurement device which measures a first measurement value as a concentration of ammonia contained in a first circulating gas flowing inside a pipe line passing through the converter in the circulating gas flowing inside the pipe unit and a second measurement value as a concentration of ammonia contained in a second circulating gas flowing inside a pipe line not passing through the converter in the circulating gas flowing inside the pipe unit; and a controller which controls operations of the pipe unit and the measurement device and calculates the concentration of the ammonia compound of the measurement subject contained in the circulating gas from a difference between the first measurement value and the second measurement value.
    Type: Application
    Filed: September 28, 2010
    Publication date: June 20, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsushi Takita, Masazumi Tanoura, Kenji Muta, Shinichiro Asami, Kageharu Moriyama
  • Publication number: 20120323502
    Abstract: A flow volume measurement device or a flow velocity measurement device include a measurement cell including a main pipe, an incident tube that is connected to the main pipe, an emission tube that is connected to the main pipe, and a first purge-fluid supply tube that is connected to the incident tube, a purge-fluid supply unit that supplies purge fluid into the first purge-fluid supply tube of the measurement cell, a light emitting unit that emits a laser beam to the measurement cell, a light receiving unit that receives the laser beam emitted from the light emitting unit and having passed through the measurement cell, and outputs a received amount of light as a light reception signal, a calculation unit that calculates a flow volume or a flow velocity of exhaust fluid flowing in the measurement cell, based on a light reception signal output from the light receiving unit.
    Type: Application
    Filed: November 22, 2010
    Publication date: December 20, 2012
    Inventors: Masazumi Tanoura, Kenji Muta, Atsushi Takita, Minoru Danno, Shinichiro Asami, Kageharu Moriyama, Daishi Ueno, Ichiro Awaya, Tadashi Aoki
  • Patent number: 8281577
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 9, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara
  • Patent number: 8237926
    Abstract: A method and apparatus for measuring density which can simultaneously measure gaseous substance density and solid particulate material density and further can simultaneously measure the densities of a plurality of materials such as black smoke, white smoke, and water vapor. The method includes irradiating a laser having at least one wavelength equivalent to an absorption wavelength of each gaseous substance to be measured.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 7, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Minoru Danno, Kenji Muta, Masazumi Tanoura, Masatoshi Katsuki, Yuuko Ujihara
  • Patent number: 8231719
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 31, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8226748
    Abstract: A CO2 reducing system (10A) is constituted by a low-temperature CO2 reducing apparatus (11-1) that includes a low-temperature absorber (1006-1) that reduces at least one of CO2 and H2S by bringing flue gas (1002) including at least one of CO2 and H2S into contact with a low-temperature absorbing solution (1005-1), a low-temperature regenerator (1008-1) that regenerates a low-temperature rich solution (1007-1), a low-temperature rich-solution supply line (12-1) that feeds the low-temperature rich solution (1007-1) to the low-temperature regenerator (1008-1), and a low-temperature lean-solution supply line (13-1) that feeds a low-temperature lean solution (1009-1) to the low-temperature absorber (1006-1) from the low-temperature regenerator (1008-1); and a high-temperature CO2 reducing apparatus (11-2) that is arranged on a side at which the flue gas (1002) is discharged, and that has the same configuration as the low-temperature CO2 reducing apparatus (11-1).
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 24, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Kouki Ogura, Yasuyuki Yagi
  • Publication number: 20120079969
    Abstract: The combustion controller controls the fuel and air that are supplied to the combustion furnace for burning substances, and addresses the aforementioned object by including: fuel supply unit for supplying fuel and air into the combustion furnace; air supply unit for supplying air into the combustion furnace, the air supply unit being disposed downstream of the fuel supply unit in the direction of flow of combustion air; concentration measuring unit for measuring the concentration of hydrogen sulfide of the combustion air by passing a measurement beam of light through the combustion air at a measurement position downstream of the fuel supply unit in the direction of flow of the combustion air; and control unit for controlling the amount of air supplied from the fuel supply unit based on a measurement result provided by the concentration measuring unit.
    Type: Application
    Filed: February 19, 2010
    Publication date: April 5, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Shinichiro Asami, Eiji Kato, Tadashi Aoki, Koutaro Fujimura, Tetsuya Sawatsubashi, Chisato Tsukahara, Shinsaku Dobashi
  • Publication number: 20120047879
    Abstract: A flue gas purifying device includes an exhaust pipe that guides flue gas discharged from an internal combustion engine; a catalytic unit that is arranged on a downstream side to the internal combustion engine in a flow direction of flue gas and includes a nitrogen-oxide storage-reduction catalyst that stores nitrogen oxides contained in flue gas and a support mechanism that is arranged in the exhaust pipe and supports the nitrogen-oxide storage-reduction catalyst in the exhaust pipe; a reducing-agent injecting unit that injects a reducing agent to the catalytic unit in the exhaust pipe; a concentration measuring unit that is arranged on a downstream side to the catalytic unit in the flow direction of flue gas and measures a concentration of nitrogen oxides in flue gas having passed through the nitrogen-oxide storage-reduction catalyst; and a control unit that controls whether to inject the reducing agent from the reducing-agent injecting unit based on a concentration of nitrogen oxides measured by the concen
    Type: Application
    Filed: January 27, 2010
    Publication date: March 1, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yuuko Ujihara, Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Publication number: 20110293483
    Abstract: An object of the present invention is to provide a flue gas purifying device that can efficiently decrease nitrogen oxides in flue gas.
    Type: Application
    Filed: January 27, 2010
    Publication date: December 1, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki, Kageharu Moriyama
  • Publication number: 20110252771
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by including: an exhaust pipe that guides flue gas discharged from an internal combustion engine; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalyst unit that includes a urea SCR catalyst that promotes a reaction between ammonia produced from injected urea water and nitrogen oxides and a support mechanism arranged inside of the exhaust pipe on a downstream side to a position where urea water is injected in a flow direction of the flue gas to support the urea SCR catalyst; an ammonia-concentration measuring unit that measures an ammonia concentration in flue gas at a measurement position in a region where the SCR catalyst is arranged; and an injection control unit that controls injection of urea water based on a measurement result acquired by the ammonia-concentration measuring unit.
    Type: Application
    Filed: December 8, 2009
    Publication date: October 20, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takashi Fujinaga, Masazumi Tanoura, Daishi Ueno, Yasushi Mitsuyama