Patents by Inventor Masazumi Tanoura

Masazumi Tanoura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110239629
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by a flue gas purifying device including: an exhaust pipe; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalytic unit that includes a urea SCR catalyst that promotes a reaction between ammonia and nitrogen oxides and a support mechanism that supports the urea SCR catalyst in the exhaust pipe, and is arranged on a downstream side to a position where urea water is injected; a concentration measuring unit arranged on a downstream side to the catalytic unit in a flow direction of flue gas to measure an ammonia concentration in flue gas having passed through the urea SCR catalyst; and a control unit that controls injection of urea water by the urea-water injecting unit based on an ammonia concentration measured by the concentration measuring unit.
    Type: Application
    Filed: December 4, 2009
    Publication date: October 6, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Publication number: 20110106397
    Abstract: Provided is a fluid measuring device for measuring flow speed of a fluid in detail. A fluid measuring device (10) is provided with a plurality of detecting sections (30, 40) and a calculating section (50). The detecting sections are arranged with a space in between on a pipe line (22) wherein a fluid flows, and the detecting sections detect parameters which change corresponding to a change of the state of the fluid. The calculating section calculates the flow speed of the fluid, based on the time shift (?T) of the parameter change detected by the pair of detecting sections and on a distance (L) along the pipe line of the pair of detecting sections.
    Type: Application
    Filed: December 3, 2008
    Publication date: May 5, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Muta, Masazumi Tanoura, Atsushi Takita, Daishi Ueno, Tadashi Aoki, Mitsunobu Sekiya
  • Patent number: 7936460
    Abstract: An exhaust gas analyzer of the present invention includes a sensor unit 11 installed in an exhaust path from an engine, applies laser light to exhaust gas emitted from the engine and receives laser light that has passed through the exhaust gas so as to measure the concentration of a component contained in the gas based on the received laser light. To an aperture 16 formed in a sensor base 15 of the sensor unit 11, an adjustment ring 40 in a circumferential face of which small holes 41 serving as a laser light passage portion is formed and whose inner circumferential face serves as an exhaust gas passage opening 21 is detachably fitted, whereby the sensor unit can be attached so as to conform to different inner diameters of exhaust tubes.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: May 3, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Mitsubishi Heavy Industries, Ltd.
    Inventors: Tomoyasu Iwase, Katsutoshi Goto, Masahiro Yamakage, Tokio Okano, Yoshihiro Deguchi, Minoru Danno, Masazumi Tanoura, Masao Watanabe, Satoshi Fukada
  • Publication number: 20110029261
    Abstract: Provided is a fluid measurement device and the like for measuring flow velocity of a fluid in detail.
    Type: Application
    Filed: December 3, 2008
    Publication date: February 3, 2011
    Inventors: Kenji Muta, Masazumi Tanoura, Atsushi Takita, Daishi Ueno, Tadashi Aoki, Mitsunobu Sekiya, Hikaru Tsukakoshi, Kiyoshi Mine
  • Publication number: 20110019193
    Abstract: Disclosed are method and apparatus for measuring density, that can simultaneously measure gaseous substance density and solid particulate material density and further can simultaneously measure the densities of a plurality of materials such as black smoke, white smoke, and water vapor in the solid particulate material in a simple and reliable manner. The method for measuring density comprises applying a laser beam having an absorption wavelength inherent in a gaseous material contained in an object to be measured, to the object to detect a light transmittance and a light absorption amount and detecting the density of gaseous materials in the object and the density of solid particulate materials in the object. The relationship between the density of a plurality of kinds of solid particulate materials including black smoke and white smoke and a laser beam attenuation level in each absorption wavelength is preset.
    Type: Application
    Filed: April 15, 2009
    Publication date: January 27, 2011
    Inventors: Minoru Danno, Kenji Muta, Masazumi Tanoura, Masatoshi Katsuki, Yuuko Ujihara
  • Publication number: 20100287911
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Application
    Filed: September 3, 2008
    Publication date: November 18, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Publication number: 20100282081
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Application
    Filed: June 11, 2010
    Publication date: November 11, 2010
    Inventors: Ryuji YOSHIYAMA, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Publication number: 20100264315
    Abstract: This invention provides a hydrocarbon concentration measuring apparatus, which, even when the concentration and composition of hydrocarbons contained in an object gas to be measured vary, can measure the concentration of the hydrocarbons with good response and good accuracy, and a hydrocarbon measuring method. Light with a waveband including a common absorption region, which is absorbed by a single or a plurality of chemical species, is applied to the object gas by an infrared irradiation equipment. The light applied to the object gas is detected with a line sensor. The absorbance in the common absorption region of the object gas is computed with an analyzer based on the detected light. The sum of concentrations of chemical species, which absorb light in the waveband in the common absorption region, in the single or plurality of chemical species contained in the object gas, is computed with the analyzer based on the absorbance.
    Type: Application
    Filed: October 28, 2008
    Publication date: October 21, 2010
    Inventors: Takahiro Okada, Seiichi Matsumoto, Masahiro Yamakage, Tomoyasu Iwase, Shigenobu Tachibana, Kenji Muta, Masazumi Tanoura, Satoshi Fukada, Ichiro Awaya, Kazuhiro Akihama, Taketoshi Fujikawa, Masami Yamamoto, Ayako Ohshima
  • Publication number: 20100242864
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Application
    Filed: September 3, 2008
    Publication date: September 30, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara
  • Publication number: 20100180764
    Abstract: An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
    Type: Application
    Filed: June 17, 2008
    Publication date: July 22, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Yasuyuki Yagi
  • Publication number: 20100170396
    Abstract: A CO2 reducing system (10A) is constituted by a low-temperature CO2 reducing apparatus (11-1) that includes a low-temperature absorber (1006-1) that reduces at least one of CO2 and H2S by bringing flue gas (1002) including at least one of CO2 and H2S into contact with a low-temperature absorbing solution (1005-1), a low-temperature regenerator (1008-1) that regenerates a low-temperature rich solution (1007-1), a low-temperature rich-solution supply line (12-1) that feeds the low-temperature rich solution (1007-1) to the low-temperature regenerator (1008-1), and a low-temperature lean-solution supply line (13-1) that feeds a low-temperature lean solution (1009-1) to the low-temperature absorber (1006-1) from the low-temperature regenerator (1008-1); and a high-temperature CO2 reducing apparatus (11-2) that is arranged on a side at which the flue gas (1002) is discharged, and that has the same configuration as the low-temperature CO2 reducing apparatus (11-1).
    Type: Application
    Filed: June 17, 2008
    Publication date: July 8, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Kouki Ogura, Yasuyuki Yagi
  • Publication number: 20090277330
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Application
    Filed: June 12, 2006
    Publication date: November 12, 2009
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Publication number: 20090095918
    Abstract: An exhaust gas analyzer of the present invention includes a sensor unit 11 installed in an exhaust path from an engine, applies laser light to exhaust gas emitted from the engine and receives laser light that has passed through the exhaust gas so as to measure the concentration of a component contained in the gas based on the received laser light. To an aperture 16 formed in a sensor base 15 of the sensor unit 11, an adjustment ring 40 in a circumferential face of which small holes 41 serving as a laser light passage portion is formed and whose inner circumferential face serves as an exhaust gas passage opening 21 is detachably fitted, whereby the sensor unit can be attached so as to conform to different inner diameters of exhaust tubes.
    Type: Application
    Filed: May 29, 2007
    Publication date: April 16, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tomoyasu Iwase, Katsutoshi Goto, Masahiro Yamakage, Tokio Okano, Yoshihiro Deguchi, Minoru Danno, Masazumi Tanoura, Masao Watanabe, Satoshi Fukada
  • Patent number: 7365352
    Abstract: A gas flux measuring device measures a region, such as a forest, as a measuring object with no influence by concomitants and with high responsiveness and excellent measuring stability. The device includes a laser beam source, laser output controller, wavelength modulation controller, first light receiver, first direct current component detector, first wavelength modulation demodulator, optical system, reference cell, second light receiver, second direct current component detector, second wavelength modulation demodulator, third wavelength modulation demodulator, analyzer, adder, temperature measurement and pressure measurement. A flow velocity measuring device directly measures horizontal 2-directional flow velocity components and a vertical directional flow velocity component of a gas flow in the measuring region and puts out these measurement signals into the analyzer.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: April 29, 2008
    Assignees: Mitsubishi Heavy Industries, Ltd., Central Research Institute of Electric Power Industry
    Inventors: Kenji Muta, Masazumi Tanoura, Ko Nakaya
  • Publication number: 20060262311
    Abstract: Provided is a gas flux measuring device measuring a region, such as forest, as a measuring object with no influence by concomitants and with high responsibility and excellent measuring stability. The device comprises a laser beam source, laser output controller, wavelength modulation controller, first light receiver, first direct current component detector, first wavelength modulation demodulator, optical system, reference cell, second light receiver, second direct current component detector, second wavelength modulation demodulator, third wavelength modulation demodulator, analyzer, adder, temperature measuring means and pressure measuring means. The device further comprises a flow velocity measuring means directly measuring horizontal 2-directional flow velocity components and a vertical directional flow velocity component of a gas flow in the measuring region and putting out these measurement signals into the analyzer.
    Type: Application
    Filed: September 28, 2004
    Publication date: November 23, 2006
    Inventors: Kenji Muta, Masazumi Tanoura, Ko Nakaya