Patents by Inventor Massimo Cataldo Mazzillo

Massimo Cataldo Mazzillo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120270360
    Abstract: A detector array for an imaging system may exploit the different sensitivities of array pixels to an incident flux of low energy photons with a wavelength falling near the high end of the range of sensitivity of the semiconductor. The detector array may provide the de-multiplexable spatial information. The detector array may include a two-terminal multi-pixel array of Schottky photodiodes electrically connected in parallel.
    Type: Application
    Filed: June 27, 2012
    Publication date: October 25, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: MASSIMO CATALDO MAZZILLO
  • Patent number: 8264019
    Abstract: A detector array for an imaging system may exploit the different sensitivities of array pixels to an incident flux of low energy photons with a wavelength falling near the high end of the range of sensitivity of the semiconductor. The detector array may provide the de-multiplexable spatial information. The detector array may include a two-terminal multi-pixel array of Schottky photodiodes electrically connected in parallel.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 11, 2012
    Assignee: STMicroelectronics S.r.L.
    Inventor: Massimo Cataldo Mazzillo
  • Publication number: 20120068050
    Abstract: A multi-pixel photodetector array may include a semiconductor substrate having a back side and a front side, Geiger mode avalanche photodiodes (GM-APDs) on the semiconductor substrate, each including an anode contact, and a common cathode for the GM-APDs and having a first connection lead on the backside of the semiconductor substrate. The multi-pixel photodetector array may include a second connection lead, and a common anode on the front side of the semiconductor substrate and configured to couple in common the anode contacts of the GM-APDs to the second connection lead. Each GM-APD may be configured to generate, when a photon impinges thereon, a current pulse of different shape for discrimination by an external circuit connected to the common cathode and the common anode.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 22, 2012
    Applicant: STMicroelectronics S.r.I.
    Inventors: Massimo Cataldo MAZZILLO, Delfo Nunziato Sanfilippo, Giovanni Condorelli
  • Publication number: 20110291103
    Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: STMicroelectronics S.r.l
    Inventor: Massimo Cataldo MAZZILLO
  • Publication number: 20110241149
    Abstract: An embodiment of a geiger-mode avalanche photodiode includes: a body of semiconductor material, having a first surface and a second surface; a cathode region of a first type of conductivity, which extends within the body; and an anode region of a second type of conductivity, which extends within the cathode region and faces the first surface, the anode and cathode regions defining a junction. The anode region includes at least two subregions, which extend at a distance apart within the cathode region starting from the first surface, and delimit at least one gap housing a portion of the cathode region, the maximum width of the gap and the levels of doping of the two subregions and of the cathode region being such that, by biasing the junction at a breakdown voltage, a first depleted region occupies completely the portion of the cathode region within the gap.
    Type: Application
    Filed: March 24, 2011
    Publication date: October 6, 2011
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo MAZZILLO, Delfo Nunziato SANFILIPPO
  • Publication number: 20110079869
    Abstract: A detector array for an imaging system may exploit the different sensitivities of array pixels to an incident flux of low energy photons with a wavelength falling near the high end of the range of sensitivity of the semiconductor. The detector array may provide the de-multiplexable spatial information. The detector array may include a two-terminal multi-pixel array of Schottky photodiodes electrically connected in parallel.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Publication number: 20100301445
    Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Publication number: 20100271108
    Abstract: An embodiment of a Geiger-mode avalanche photodiode, having: a body made of semiconductor material of a first type of conductivity, provided with a first surface and a second surface and forming a cathode region; and an anode region of a second type of conductivity, extending inside the body on top of the cathode region and facing the first surface. The photodiode moreover has: a buried region of the second type of conductivity, extending inside the body and surrounding an internal region of the body, which extends underneath the anode region and includes the internal region and defines a vertical quenching resistor; a sinker region extending through the body starting from the first surface and in direct contact with the buried region; and a contact region made of conductive material, overlying the first surface and in direct contact with the sinker region.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Delfo Nunziato SANFILIPPO, Massimo Cataldo Mazzillo, Piero Giorgio Fallica
  • Publication number: 20100148040
    Abstract: An embodiment of a Geiger-mode avalanche photodiode includes a body of semiconductor material having a first conductivity type, a first surface and a second surface; a trench extending through the body from the first surface and surrounding an active region; a lateral-isolation region within the trench, formed by a conductive region and an insulating region of dielectric material, the insulating region surrounding the conductive region; an anode region having a second conductivity type, extending within the active region and facing the first surface. The active region forms a cathode region extending between the anode region and the second surface, and defines a quenching resistor. The photodiode has a contact region of conductive material, overlying the first surface and in contact with the conductive region for connection thereof to a circuit biasing the conductive region, thereby a depletion region is formed in the active region around the insulating region.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 17, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Delfo Nunziato SANFILIPPO, Massimo Cataldo MAZZILLO