Patents by Inventor Mathias B. Steiner

Mathias B. Steiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10816456
    Abstract: A reconfigurable point-of-care system, comprising an analysis device having one or more detection components to perform a diagnostic method on a sample, the sample being loaded on a microfluidic chip, wherein the analysis device provides identification information, an interface device coupled to the analysis device to provide a communication channel, and a reader unit coupled to the communication channel and having a processor to select the diagnostic method based on the identification information and reconfigure one or more components of the interface device based on the analysis device.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 27, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andre de Oliveira Botelho, Ricardo L. Ohta, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Patent number: 10719782
    Abstract: A method includes: performing a machine learning process using information for enhanced oil recovery (EOR) materials to be used for an EOR process on a defined oil reservoir; determining EOR materials suitable for a condition of the oil reservoir; listing the EOR materials; and outputting an indication of the EOR materials. The materials comprise a first complex fluid to be introduced into the oil reservoir. Determining the EOR materials suitable for the condition is based on similarities between a first set of vector values for the first complex fluid, a second set of vector values for a second complex fluid already in the oil reservoir, and geological data, each of the vector values of the first set being defined by parameters of the first complex fluid and each of the vector values of the second set being defined by parameters of the second complex fluid and the geological data.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Mathias B. Steiner, Ronaldo Giro, Rodrigo Neumann Barros Ferreira, Romulo de Carvalho Magalhaes
  • Patent number: 10691846
    Abstract: A method is provided including receiving data corresponding to a three-dimensional physical representation of a porous rock sample; calculating a low-dimensional representation of a pore network in the porous rock sample based on the three-dimensional physical representation; extracting one or more geometrical parameter from the low-dimension representation; generating a capillary network model of the porous rock sample based at least on the at least one geometrical parameter for simulating fluid flow inside the porous rock sample; and performing at least one simulation of a flow of the fluid through the capillary network model of the porous rock sample with a fluid additive to provide a predicted enhanced fluid recovery efficiency.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 23, 2020
    Assignee: International Business Machines Corporation
    Inventors: Peter William Bryant, William Fernando Lopez Candela, Alexandre Ashade Lassance Cunha, Rodrigo Neumann Barros Ferreira, Mathias B Steiner
  • Patent number: 10679849
    Abstract: A method of positioning nanomaterials includes patterning guiding dielectric features from a single layer of guiding dielectric material, and producing an electric field by at least one electrode disposed on a substrate that is attenuated through the guiding dielectric features to create an attractive dielectrophoretic force that guides at least one nanostructure abutting the guiding dielectric features to be positioned on a deposition surface of the substrate.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Michael Engel, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Patent number: 10648292
    Abstract: A method is provided including calculating a first property vector indicative of physical properties derived from a digital image of a first rock sample; determining a set of one or more similar rock samples by calculating a value indicating a similarity between the first rock sample and second rock samples based on the first property vector and second property vectors associated with the second rock samples; selecting a list of fluid additives based on existing enhanced fluid recovery efficiency values associated with the similar rock samples; performing, for each of the fluid additives, a simulation of a flow of fluid through a digital model of the first rock to determine a simulated enhanced fluid recovery efficiency value for the respective fluid additives; and outputting an optimal fluid additive for the first rock sample based at least in part on the calculated similarity values and simulated enhanced fluid recovery efficiency values.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Peter William Bryant, Rodrigo Neumann Barros Ferreira, Ronaldo Giro, Mathias B Steiner
  • Patent number: 10621292
    Abstract: A method includes constructing a digital model of a porous rock sample using input data and establishing for the digital model of a porous rock sample and for a fluid of interest figures-of-merit that are established for full-sample dimensions. For a selected fluid flow model, the method performs a calibration so as to match parameters of the selected fluid flow model to the established figures-of-merit and, based on the calibrated fluid flow model, performs at least one simulation of a flow of the fluid through the digital model of a porous rock sample with a fluid additive to provide a predicted enhanced fluid recovery efficiency. Also disclosed is a system as well as a computer program product configured to implement the method.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Neumann Barros Ferreira, Mathias B. Steiner
  • Publication number: 20200018723
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 16, 2020
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Publication number: 20200011797
    Abstract: A system is provided for performing metal trace analysis on a liquid sample. A sample holder holds an analysis substrate that includes a reference region and at least one test region. An ultraviolet (UV) light source emits ultraviolet light illuminating the liquid sample. An optical sensor detects radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. A microcontroller processes the electrical signal. An external interface transmits the processed electrical signal to an external device. The analysis substrate is configured for manual movement by a user. A tracking system detects a sample scanning location for the metal trace analysis, and includes a light source, other than the UV light source, and another optical sensor. The other optical sensor detects light emitted by the light source.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 9, 2020
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Publication number: 20190383783
    Abstract: A method and system for receiving, at a sampling location recommendation module, conventional and complementary information regarding a liquid distribution system, wherein the complementary information includes at least one of a social media post or a consumer report; processing the complementary information and a database of the liquid distribution system in the sampling location recommendation module, using computational and artificial intelligence algorithms, to generate a list of locations for sampling the liquid distribution system; displaying the list of locations; receiving a geo-tagged test record indicative of a sampled contaminant concentration value of at least one location of the list of locations; processing the geo-tagged test record, at a contamination source mapping module, to estimate a location and risk of a contamination source in the liquid distribution system; and displaying the estimated location and risk of the contamination source by modifying a map of the liquid distribution system
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: JAIONE T. AZPIROZ, MICHAEL ENGEL, ADEMIR FERREIRA DA SILVA, RICARDO L. OHTA, ANDRE DE OLIVEIRA BOTELHO, MATHIAS B. STEINER
  • Publication number: 20190371603
    Abstract: A method of positioning nanomaterials includes patterning guiding dielectric features from a single layer of guiding dielectric material, and producing an electric field by at least one electrode disposed on a substrate that is attenuated through the guiding dielectric features to create an attractive dielectrophoretic force that guides at least one nanostructure abutting the guiding dielectric features to be positioned on a deposition surface of the substrate.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Michael Engel, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Publication number: 20190347568
    Abstract: A method includes: performing a machine learning process using information for enhanced oil recovery (EOR) materials to be used for an EOR process on a defined oil reservoir; determining EOR materials suitable for a condition of the oil reservoir; listing the EOR materials; and outputting an indication of the EOR materials. The materials comprise a first complex fluid to be introduced into the oil reservoir. Determining the EOR materials suitable for the condition is based on similarities between a first set of vector values for the first complex fluid, a second set of vector values for a second complex fluid already in the oil reservoir, and geological data, each of the vector values of the first set being defined by parameters of the first complex fluid and each of the vector values of the second set being defined by parameters of the second complex fluid and the geological data.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 14, 2019
    Inventors: Mathias B. Steiner, Ronaldo Giro, Rodrigo Neumann Barros Ferreira, Romulo de Carvalho Magalhaes
  • Publication number: 20190338181
    Abstract: The present invention relates generally to hydrocarbon recovery, and more particularly, a method of designing a nanoparticle tailored to support hydrocarbon recovery in a subterranean formation, a method for using nanoparticles to extract hydrocarbon from a subterranean formation, and a nanoparticle structure. Embodiments may include determining environmental conditions of a subterranean formation, defining nanoparticle parameters based on the environmental conditions, and forming a nanoparticle comprising the nanoparticle parameters. Embodiments may include producing a colloidal suspension of nanoparticles by mixing nanoparticles with water and injecting the colloidal suspension of nanoparticles into a subterranean formation. A nanoparticle structure may include a hydrophilic material in a defined three-dimensional shape having a maximum diameter.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Ronaldo Giro, Claudius Feger, Mathias B. Steiner
  • Patent number: 10444184
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 15, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Patent number: 10431453
    Abstract: A method of positioning nanomaterials that includes forming a set of electrodes on a substrate, and covering the electrodes and substrate with a single layer of guiding dielectric material. The method may continue with patterning the guiding dielectric to provide dielectric guide features, wherein an exposed portion of the substrate between the dielectric guide features provides a deposition surface. A liquid medium containing at least one nanostructure is applied to the guiding dielectric features and the deposition surface. An electric field produced by the electrodes that is attenuated by the dielectric guide features creates an attractive force that guides the nanostructures to the deposition surface.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: October 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Patent number: 10429303
    Abstract: A portable optical measurement system is provided for performing metal trace analysis on a liquid sample. The system includes a sample holder for holding an analysis substrate that includes the liquid sample during the metal trace analysis. The system further includes an ultraviolet (UV) light source for emitting ultraviolet light illuminating the liquid sample. The system also includes an optical sensor for detecting radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. The system additionally includes a microcontroller for processing the electrical signal. The system further includes an external interface for transmitting the processed electrical signal to an external device.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Patent number: 10392555
    Abstract: A method of designing a nanoparticle tailored to support hydrocarbon recovery in a subterranean formation, a method for using nanoparticles to extract hydrocarbon from a subterranean formation, and a nanoparticle structure. The method may include determining environmental conditions of a subterranean formation, defining nanoparticle parameters based on the environmental conditions, and forming a nanoparticle comprising the nanoparticle parameters. The method may include producing a colloidal suspension of nanoparticles by mixing nanoparticles with water and injecting the colloidal suspension of nanoparticles into a subterranean formation. A nanoparticle structure may include a hydrophilic material in a defined three-dimensional shape having a maximum diameter. The nanoparticle may penetrate through an oil-water interface with an optimized contact angle, minimize an interfacial area between oil and water, and create an oil in water emulsion.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ronaldo Giro, Claudius Feger, Mathias B. Steiner
  • Patent number: 10388805
    Abstract: A method of forming a wavelength detector that includes forming a first transparent material layer having a uniform thickness on a first mirror structure, and forming an active element layer including a plurality of nanomaterial sections and electrodes in an alternating sequence atop the first transparent material layer. A second transparent material layer is formed having a plurality of different thickness portions atop the active element layer, wherein each thickness portion correlates to at least one of the plurality of nanomaterials. A second mirror structure is formed on the second transparent material layer.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 20, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Mathias B. Steiner
  • Patent number: 10386331
    Abstract: Method, apparatus, and computer program product for a microfluidic channel having a cover opposite its bottom and having electrodes with patterned two-dimensional conducting materials, such as graphene sheets integrated into the top of its bottom. Using the two-dimensional conducting materials, once a fluid sample is applied into the channel, highly localized modulated electric field distributions are generated inside the channel and the fluid sample. This generated field causes the inducing of dielectrophoretic (DEP) forces. These DEP forces are the same or greater than DEP forces that would result using metallic electrodes because of the sharp edges enabled by the two-dimension geometry of the two-dimensional conducting materials. Because of the induced forces, micro/nano-particles in the fluid sample are separated into particles that respond to a negative DEP force and particles that respond to a positive DEP.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Michael Engel, Mathias B. Steiner
  • Publication number: 20190195851
    Abstract: A growth chamber chip includes a base surrounding a growth chamber; a growth medium within the growth chamber; a sensor package within the growth chamber; a sensor feedthrough extending from the sensor package through a portion of the base to an outer surface of the base; and a transparent seal covering the growth chamber. In one or more embodiments, the base includes a nutrient channel connected in fluid communication with the growth medium and exposed to an outer surface of the base. One or more embodiments provide an array of growth chamber chips, with a movable arm that is movable across the array to individually scan each of the growth chamber chips.
    Type: Application
    Filed: December 25, 2017
    Publication date: June 27, 2019
    Inventors: Michael Engel, Ademir Ferreira da Silva, Ado Jorio de Vasconcelos, Ricardo L. Ohta, Mathias B. Steiner
  • Patent number: 10283629
    Abstract: A method of forming an electrical device that includes forming a gate dielectric layer over a gate electrode, forming source and drain electrodes on opposing sides of the gate electrode, wherein one end of the source and drain electrodes provides a coplanar surface with the gate dielectric, and positioning a 1D or 2D nanoscale material on the coplanar surface to provide the channel region of the electrical device.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: May 7, 2019
    Assignee: International Business Machines Corporation
    Inventors: Michael Engel, Mathias B. Steiner