Patents by Inventor Matthew A. Mow

Matthew A. Mow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10056695
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: August 21, 2018
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Publication number: 20180233808
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on a printed circuit. The printed circuit may be a stacked printed circuit including multiple stacked substrates. Metal traces may form an array of patch antennas, Yagi antennas, and other antennas. Antenna signals associated with the antennas may pass through an inactive area in a display and through a dielectric-filled slot in a metal housing for the electronic device. Waveguide structures may be used to guide antenna signals within interior portions of the electronic device.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Basim H. Noori, Boon W. Shiu, Kevin M. Marks, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Ruben Caballero, Yuehui Ouyang, Khan Salam
  • Publication number: 20180219276
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Publication number: 20180219637
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Matthew A. Mow, Basim Noori, Yuehui Ouyang, Yi Jiang, Mattia Pascolini, Ruben Caballero
  • Patent number: 9997828
    Abstract: An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 12, 2018
    Assignee: Apple Inc.
    Inventors: Yuehui Ouyang, Dean F. Darnell, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Nanbo Jin, Robert W. Schlub
  • Publication number: 20180152220
    Abstract: An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 31, 2018
    Inventors: Matthew A. Mow, Robert W. Schlub, Mattia Pascolini, Robert J. Hill, Ruben Caballero
  • Patent number: 9972892
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on a printed circuit. The printed circuit may be a stacked printed circuit including multiple stacked substrates. Metal traces may form an array of patch antennas, Yagi antennas, and other antennas. Antenna signals associated with the antennas may pass through an inactive area in a display and through a dielectric-filled slot in a metal housing for the electronic device. Waveguide structures may be used to guide antenna signals within interior portions of the electronic device.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 15, 2018
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Boon W. Shiu, Kevin M. Marks, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Ruben Caballero, Yuehui Ouyang, Khan Salam
  • Patent number: 9972891
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for a given antenna may be formed from metal structures supported by a plastic carrier. The antenna resonating element arm may be coupled to switching circuitry to isolate the antenna resonating element arm when the antenna resonating element arm is not being used to handle communications in a communications band. The electronic device may have a metal housing. A slot may separate a peripheral portion of the housing such as a sidewall portion from a planar rear portion. The sidewall portion and the planar rear portion may form an additional antenna that operates at communications frequencies outside of the communications band handled by the given antenna. A parasitic antenna resonating element arm may be formed in the slot to enhance the frequency response of the additional antenna.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 15, 2018
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Mattia Pascolini
  • Patent number: 9966667
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: May 8, 2018
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Patent number: 9960801
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: May 1, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Liang Han, Ming-Ju Tsai, Thomas E. Biedka, Victor Lee, James G. Judkins, Mattia Pascolini
  • Patent number: 9960864
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 1, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim Noori, Yuehui Ouyang, Yi Jiang, Mattia Pascolini, Ruben Caballero
  • Publication number: 20180115071
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Basim H. Noori, Khan M. Salam, Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yi Jiang, Yuehui Ouyang
  • Publication number: 20180090816
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Matthew A. Mow, Basim H. Noori, Mattia Pascolini, Xu Han, Victor C. Lee, Ming-Ju Tsai, Simone Paulotto
  • Patent number: 9930725
    Abstract: An electronic device may be provided with wireless circuitry. An application processor may generate wireless data that is to be transmitted using the wireless circuitry and may process wireless data that has been received using the wireless circuitry. The wireless circuitry may include multiple baseband processors, multiple associated radios, and front-end module and antenna circuitry. Sensors may be used to provide the application processor with sensor data. During operation, the application processor and the baseband processors may be used to transmit and receive wireless communications traffic. A multiradio controller integrated circuit that does not transmit or receive the wireless communications traffic may be used in controlling the wireless circuitry based on impedance measurements, sensor data, and other information.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Mattia Pascolini, Thomas E. Biedka, Liang Han, Ming-Ju Tsai, Victor Lee, James G. Judkins
  • Publication number: 20180083344
    Abstract: An electronic device may include wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of the device. The antenna may have first and second antenna feeds and multiple adjustable components that bridge a slot between the antenna resonating element and an antenna ground. Control circuitry may control the adjustable components and selectively activate one of the first and second feeds at a given time to place the antenna in first, second, or third operating modes. The control circuitry may determine which operating mode to use based on information indicative of the operating environment of the device. By switching between the operating modes, the control circuitry may shift current hot spots across the length of the resonating element arm to ensure satisfactory performance of the antenna in a variety of operating conditions.
    Type: Application
    Filed: February 10, 2017
    Publication date: March 22, 2018
    Inventors: Xu Han, Liang Han, Matthew A. Mow, Ming-Ju Tsai
  • Patent number: 9923272
    Abstract: An electronic device may include an adjustable power supply, at least one antenna, and associated antenna tuning circuitry. The antenna tuning circuitry may be an integral part of the antenna and may include a control circuit and at least one tunable element. The tunable element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. The power supply may provide power supply voltage signals to the antenna tuning circuitry via inductive coupling. The power supply voltage signals may be modulated according to a predetermined lookup table during device startup so that the control circuit is configured to generate desired control signals. These control signals adjust the tunable element so that the antenna can support wireless operation in desired frequency bands.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: March 20, 2018
    Assignee: Apple Inc.
    Inventors: Robert S. Sorensen, Qingxiang Li, Matthew A. Mow, Jinku Kim
  • Publication number: 20180069317
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Publication number: 20180069295
    Abstract: An electronic device may be provided with wireless circuitry that includes an antenna. Control circuitry may perform closed loop tuning adjustments on the antenna. For example, the control circuitry may adjust a tunable component to tune the antenna to a first tuning setting. The control circuitry may gather impedance values from the antenna while tuned to the first tuning setting and may process the impedance values to determine whether to tune the antenna to a second tuning setting. If the impedance values lie within a predetermined complex impedance region, the control circuitry may tune the antenna to the second setting. If the impedance values lie outside of the region, the control circuitry may continue to gather impedance values using the first setting. These operations may compensate for detuning of the antenna due to proximity of a user regardless of how the electronic device is held during operation.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 8, 2018
    Inventors: Liang Han, Matthew A. Mow, Thomas E. Biedka
  • Publication number: 20180048052
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. Elongated conductive members may longitudinally divide openings between the peripheral conductive housing structures and the ground. The elongated conductive members may extend from an internal ground to outer ends of the elongated conductive members that are located adjacent to the gaps. Transmission lines may extend along the elongated conductive members to antenna feeds at the outer ends. The elongated conductive members may form open slots that serve as slot antenna resonating elements for the antenna.
    Type: Application
    Filed: September 14, 2017
    Publication date: February 15, 2018
    Inventors: Nanbo Jin, Anand Lakshmanan, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai
  • Patent number: 9893755
    Abstract: An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Robert W. Schlub, Mattia Pascolini, Robert J. Hill, Ruben Caballero