Patents by Inventor Matthew A. Mow

Matthew A. Mow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9310422
    Abstract: A test system for testing a device under test (DUT) is provided. The test system may include a DUT receiving structure configured to receive the DUT during testing and a DUT retention structure that is configured to press the DUT against the DUT receiving structure so that DUT cannot inadvertently shift around during testing. The DUT retention structure may include a pressure sensor operable to detect an amount of pressure that is applied to the DUT. The DUT retention structure may be raised and lowered vertically using a manually-controlled or a computer-controlled positioner. The positioner may be adjusted using a coarse tuning knob and a fine tuning knob. The positioner may be calibrated such that the DUT retention structure applies a sufficient amount of pressure on the DUT during production testing.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 12, 2016
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Liang Han, Matthew A. Mow, Hagan O'Connor, Joshua G. Nickel, Peter Bevelacqua, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20160097833
    Abstract: An electronic device may have control circuitry that uses a reflectometer to measure antenna impedance during operation. The reflectometer may have a directional coupler that is coupled between radio-frequency transceiver circuitry and an antenna. A calibration circuit may be coupled between the directional coupler and the antenna. The calibration circuit may have a first port coupled to the antenna, a second port coupled to the directional coupler, and a third port that is coupled to a calibration resistance. The reflectometer may have terminations of identical impedance that are coupled to ground. Switching circuitry in the reflectometer may be used to route signals from the directional coupler to a feedback receiver for measurement by the control circuitry or to ground through the terminations. Calibrated antenna reflection coefficient measurements may be used in dynamically adjusting the antenna.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 7, 2016
    Inventors: Liang Han, Matthew A. Mow, Thomas E. Biedka, Mattia Pascolini, Ming-Ju Tsai, James G. Judkins, Victor Lee, Robert W. Schlub
  • Publication number: 20160064812
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Liang Han, Ming-Ju Tsai, Matthew A. Mow, Yijun Zhou, Mattia Pascolini, Salih Yarga, Enrique Ayala Vazquez, Hongfei Hu, Xu Han, Robert W. Schlub
  • Publication number: 20160064801
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Liang Han, Matthew A. Mow, Ming-Ju Tsai, Yijun Zhou, Hongfei Hu, Salih Yarga, Mattia Pascolini, Yuehui Ouyang, Erdinc Irci, Enrique Ayala Vazquez, Robert W. Schlub
  • Patent number: 9276319
    Abstract: Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. An extended portion of the antenna ground may form an inverted-F antenna resonating element portion of the antenna resonating element. The antenna resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A first antenna feed may be coupled between the peripheral conductive electronic device housing structures and the antenna ground across the opening. A second antenna feed may be coupled to the inverted-F antenna resonating element portion of the antenna resonating element.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 1, 2016
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Matthew A. Mow, Ming-Ju Tsai, Robert W. Schlub, Dean F. Darnell, Yuehui Ouyang, Nanbo Jin, Liang Han, David Pratt
  • Patent number: 9236659
    Abstract: An electronic device may be provided with a housing. The housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by a slot. An antenna feed may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground and may feed both an inverted-F antenna structure that is formed from the peripheral metal member and the ground and a slot antenna structure that is formed from the slot. Control circuitry may tune the antenna by controlling adjustable components that are coupled to the peripheral metal member. The adjustable components may include adjustable inductors and adjustable capacitors.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: January 12, 2016
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Yijun Zhou, Matthew A. Mow, Robert W. Schlub, Erdinc Irci, Salih Yarga, Ming-Ju Tsai, Liang Han, Thomas E. Biedka, Nicholas S. Reimnitz
  • Publication number: 20150372656
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Ming-Ju Tsai, James G. Judkins, Enrique Ayala Vazquez, Jayesh Nath, Hongfei Hu, Nanbo Jin, Hao Xu, Yijun Zhou, Yuehui Ouyang, Victor Lee, Mattia Pascolini, Ruben Caballero
  • Patent number: 9214718
    Abstract: A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 15, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Rocco V. Dragone, Jr., Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Robert W. Schlub, Mattia Pascolini, Ruben Caballero
  • Publication number: 20150341073
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the. electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 26, 2015
    Applicant: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Salih Yarga, Yijun Zhou, Erdinc lrci, Jayesh Nath, Ming-Ju Tsai, Matthew A. Mow, Liang Han, James G. Judkins, Robert W. Schlub
  • Patent number: 9190712
    Abstract: An electronic device antenna may be provided with an antenna ground. An antenna resonating element may have a first end that is coupled to the ground using an inductor and may have a second end that is coupled to a peripheral conductive housing member in an electronic device. The peripheral conductive housing member may have a portion that is connected to the ground and may have a portion that is separated from the ground by a gap. The gap may be bridged by an inductor that couples the second end of the antenna resonating element to the antenna ground. The inductor may be bridged by a switch. A tunable circuit such as a capacitor bridged by a switch may be interposed in the antenna resonating element. The switches that bridge the gap and the capacitor may be used in tuning the antenna.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 17, 2015
    Assignee: Apple Inc.
    Inventors: Hongfei Hu, Mattia Pascolini, Robert W. Schlub, Matthew A. Mow, Nanbo Jin
  • Publication number: 20150303549
    Abstract: An electronic device may have radio-frequency transceiver circuitry for transmitting and receiving antenna signals using an antenna. The antenna may be formed within a connector port in the electronic device or may be formed on an external cable that is coupled to the connector port. The antenna may have an antenna resonating element that is formed from a signal wire in the external cable or that is formed from a metal structure mounted to the external cable. The radio-frequency transceiver circuitry may be directly coupled to the antenna resonating element using springs or other direct coupling mechanisms or may be coupled to the antenna resonating element using a coupling structure. The coupling structure may include a capacitor electrode, an inductor, or other structures for coupling to the antenna resonating element by electromagnetic near-field coupling.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 22, 2015
    Applicant: Apple Inc.
    Inventors: Erdinc Irci, Robert W. Schlub, Mattia Pascolini, Matthew A. Mow, Thomas E. Biedka
  • Patent number: 9164159
    Abstract: A manufacturing system for assembling wireless electronic devices is provided. The manufacturing system may include test stations for testing the radio-frequency performance of components that are to be assembled within the electronic devices. A reference test station may be calibrated using calibration coupons having known radio-frequency characteristics. The calibration coupons may include transmission line structures. The reference test station may measure verification standards to establish baseline measurement data. The verification standards may include circuitry having electrical components with given impedance values. Many verification coupons may be measured to enable testing for a wide range of impedance values. Test stations in the manufacturing system may subsequently measure the verification standards to generate test measurement data.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 20, 2015
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Joshua G. Nickel, Hao Xu, Peter Bevelacqua, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9166634
    Abstract: Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: October 20, 2015
    Assignee: Apple Inc.
    Inventors: Dean F. Darnell, Enrique Ayala Vazquez, Hongfei Hu, Yuehui Ouyang, Mattia Pascolini, Robert W. Schlub, Peter Bevelacqua, Hao Xu, Jayesh Nath, Yijun Zhou, Nanbo Jin, David Pratt, Matthew A. Mow, Ming-Ju Tsai, Liang Han, Thomas E. Biedka
  • Patent number: 9153874
    Abstract: Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include an inverted-F antenna resonating element and an antenna ground that form an inverted-F antenna having first and second antenna ports. The antenna structures may include a slot antenna resonating element. The slot antenna resonating element may serve as a parasitic antenna resonating element for the inverted-F antenna at frequencies in a first communications band and may serve as a slot antenna at frequencies in a second communications band. The slot antenna may be directly fed using a third antenna port. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. The inverted-F antenna may also be tuned using an adjustable capacitor bridging the slot antenna resonating element.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: October 6, 2015
    Assignee: Apple Inc.
    Inventors: Yuehui Ouyang, Nanbo Jin, Yijun Zhou, Enrique Ayala Vazquez, Anand Lakshmanan, Robert W. Schlub, Mattia Pascolini, Matthew A. Mow
  • Publication number: 20150280771
    Abstract: An electronic device has wireless communications circuitry including an adjustable antenna system coupled to a radio-frequency transceiver. The adjustable antenna system may include one or more adjustable electrical components that are controlled by storage and processing circuitry in the electronic device. The adjustable electrical components may include switches and components that can be adjusted between numerous different states. The adjustable electrical components may be coupled between antenna system components such as transmission line elements, matching network elements, antenna elements and antenna feeds. By adjusting the adjustable electrical components, the storage and processing circuitry can tune the adjustable antenna system to ensure that the adjustable antenna system covers communications bands of interest.
    Type: Application
    Filed: June 11, 2015
    Publication date: October 1, 2015
    Inventors: Matthew A. Mow, Robert W. Schlub, Mattia Pascolini, Robert J. Hill, Ruben Caballero
  • Patent number: 9147932
    Abstract: Antenna structures for an antenna may be formed from a dielectric carrier with metal structures. The metal structures may be patterned to cover all sides of the dielectric carrier. The dielectric carrier may have a shape with six sides or other shape that creates a three-dimensional layout for the antenna structures. The antenna structures may have a tunable circuit that allows the antenna to be tuned. The tunable circuit may have first and second terminals coupled to one of the sides of the carrier. The metal structures may be configured to form an inverted-F antenna resonating element. Portions of the metal structures may form a first arm for an inverted-F antenna and portions of the metal structures may form a second arm for the inverted-F antenna. The antenna may operate in multiple communications bands. The tunable circuit may tune one band without significantly tuning other bands.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 29, 2015
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Qingxiang Li, Matthew A. Mow, Robert W. Schlub
  • Publication number: 20150255869
    Abstract: An electronic device may include an adjustable power supply, at least one antenna, and associated antenna tuning circuitry. The antenna tuning circuitry may be an integral part of the antenna and may include a control circuit and at least one tunable element. The tunable element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. The power supply may provide power supply voltage signals to the antenna tuning circuitry via inductive coupling. The power supply voltage signals may be modulated according to a predetermined lookup table during device startup so that the control circuit is configured to generate desired control signals. These control signals adjust the tunable element so that the antenna can support wireless operation in desired frequency bands.
    Type: Application
    Filed: May 21, 2015
    Publication date: September 10, 2015
    Inventors: Robert S. Sorensen, Qingxiang Li, Matthew A. Mow, Jinku Kim
  • Publication number: 20150249292
    Abstract: An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 3, 2015
    Applicant: Apple Inc.
    Inventors: Yuehui Ouyang, Dean F. Darnell, Enrique Ayala Vazquez, Erica J. Tong, Hongfei Hu, Matthew A. Mow, Mattia Pascolini, Ming-Ju Tsai, Nanbo Jin, Robert W. Schlub
  • Patent number: 9084124
    Abstract: A wireless electronic device may contain at least one adjustable antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test system that is used for performing passive radio-frequency (RF) testing on antenna tuning elements in partially assembled devices is provided. The test system may include an RF tester and a test host. The tester may be used to gather scattering parameter measurements from the antenna tuning element. The test host may be used to ensure that power and appropriate control signals are being supplied to the antenna tuning element so that the antenna tuning element is placed in desired tuning states during testing.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 14, 2015
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Jr-Yi Shen, Anand Lakshmanan, Jayesh Nath, Matthew A. Mow, Mattia Pascolini, Vishwanath Venkataraman, Peter Bevelacqua, Xin Cui
  • Patent number: 9070968
    Abstract: A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: June 30, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Rocco V. Dragone, Jr., Thomas E. Biedka, Robert W. Schlub, Ruben Caballero