Patents by Inventor Matthew Becker

Matthew Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12187844
    Abstract: In various embodiments, the present invention provides well-defined biodegradable poly(lactone-b-propylene fumarate) diblock and triblock polymers formed using a novel one-pot, scalable ring-opening block-order copolymerization (ROBOCOP) technique that utilizes magnesium 2,6-di-tert-butyl-4-methylphenoxide (Mg(BHT)2(THF)2) to “switch” from the ROP of cyclic esters to the ROCOP of maleic anhydride (MAn) and propylene oxide (PO) to produce PPF based block copolymers for application in additive manufacturing and patient specific regenerative medicine. These block copolymers are fully resorbable and can be photochemically crosslinked in a number of applications, including 3D printing. By adding the lactone block to the PPF polymer, the viscosity of the resulting block copolymer at working temperatures can be precisely controlled and the quantity of the reactive diluent in printable resins can be reduced or eliminated.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: January 7, 2025
    Assignee: The University of Akron
    Inventors: Matthew Becker, James Wilson, Shannon Petersen
  • Patent number: 12157795
    Abstract: In one or more embodiments, the present invention is directed to a novel method for synthesizing Mg(BHT)2(THF)2 catalyst, which has several advantages over previous methods. Dry toluene or pentane are not required for synthesizing the catalyst, and the reaction is done in a bulk solution of BHT and THF. Further, because the Mg(BHT)2(THF)2 is made in a one-step (“one-pot”) synthesis, the time required for synthesizing and drying the catalyst is reduced. Using the new method of the present invention, the Mg(BHT)2(THF)2 is pure after removing excess THF, thereby eliminating the need for washes and recrystallization.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 3, 2024
    Assignee: The University of Akron
    Inventors: Matthew Becker, Alex P. Kleinfehn, Shannon R. Petersen
  • Publication number: 20240191032
    Abstract: In various embodiments. the present invention relates to a recyclable, semi-crystalline, mechanochromic elastomeric composition for use in sensor, strain-sensing and shape-memory applications having mechanochromism, SH, and SIC properties that are each strain rate-dependent. In various embodiments, the present invention is directed to a dipropiolate-derivatized spiropyran (SP) mechanophore and thiol-yne-derived stereoelastomers doped with these SP mechanophores. These SP doped, thiol-yne-derived stereoelastomers may be synthesized via a base-directed Michael addition polymerization reaction. These linear polymers have been found to be semi-crystalline, recyclable, and mechanochromic under several methods of mechanical activation.
    Type: Application
    Filed: May 26, 2023
    Publication date: June 13, 2024
    Inventors: Matthew BECKER, Virginia RITTER, Stephen CRAIG
  • Publication number: 20240182747
    Abstract: In various embodiments, the present invention relates to a series 3D printable, biodegradable, poly(propylene fumarate) derivative ABA type triblock copolymers having a flexible propylene succinate core unit synthesized through ring-opening copolymerization using a Mg(BHT)2(THF)2 catalyst followed by isomerization. 3D printing utilizing thiol-ene chemistry yield precise structure with improved build time. 3D printed products are fully degraded in hydrolytic conditions and the mechanical properties and degradation rate can be tailored by the polymer composition and resin formulation.
    Type: Application
    Filed: March 1, 2022
    Publication date: June 6, 2024
    Inventors: Matthew BECKER, Yongjun SHIN
  • Patent number: 11987668
    Abstract: In one or more embodiments, the present invention provides am method of making a poly(propylene fumarate-co-succinate) (PPFS) copolymer containing a random incorporation of succinate groups and targetable reduction profiles without the need for three or more monomer units. To achieve this, a time-dependent sonication-promoted zinc/acetic acid reduction of the PPM unsaturated double bonds has been used to create a random PPMS copolymer which may be isomerized into the PPFS equivalent. By changing the sonication time as well as the ratios of acetic acid, zinc, and PPM unsaturated alkenes, partial reduction of the PPM alkenes has been shown to give PPMS products containing varying compositions of succinic and maleate units, which may then be isomerized to the PPFS product.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: May 21, 2024
    Assignee: The University of Akron
    Inventors: Matthew Becker, Garrett Fredric Bass
  • Patent number: 11931478
    Abstract: In various aspects, the present invention is directed to novel bioactive peptide loaded poly(propylene fumarate) (PPF) tissue scaffolds and related methods for their making and use. In various embodiments, these bioactive peptide loaded poly(propylene fumarate) tissue scaffolds are formed by forming a PPF structure or matrix using photochemical 3-D printing techniques and then loading that printed PPF structure or matrix with a bioactive peptides or other bioactive compounds that have, or have been functionalized to have, a thiol functional group at or near its terminus. The thiol groups on the bioactive peptides or other compound will react with exposed alkene functional groups on the PPF polymer matrix via a thiol-ene “click” reaction, thereby binding these bioactive peptides or other compounds to the tissue scaffolds. The bioactive peptide loaded PPF tissue scaffolds of the present invention are particularly useful in repairing bone defects.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: March 19, 2024
    Assignee: The University of Akron
    Inventors: Matthew Becker, Yanyi Xu
  • Publication number: 20230347014
    Abstract: In various embodiments, the present invention is directed resorbable star PPF 4D printed structures with compressive shape memory properties. In some embodiments, these printed structures may be compressed at room temperature from a first thickness to a second thickness for insertion into the body, where they reach body temperature and expand into a desired (third) thickness. The compression and expansion of these resorbable star PPF 4D printed structures allows for easier insertion of things such as, bone scaffold and stents (e.g., vascular stents, kidney stents, urethral stents, colitis stents, esophageal stents, colon stents, intestinal stents, or venous stents) into the body, as they can be compressed prior to insertion.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 2, 2023
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew Becker, Gaelle LE FER
  • Patent number: 11771543
    Abstract: In various embodiments, the present invention is directed to a degradable poly(ester urea) (PEU)-based adhesion barrier, particularly suitable for use in connection with surgical mesh repair in the treatment of hernias and other soft tissue injuries comprising an amino acid based poly(ester urea) backbone and one or more zwitterionic side chains connected to the amino acid based poly(ester urea) backbone through a sulfide bond. In some other embodiments, the present invention is directed to method of making the PEU-based adhesion barriers comprising: preparing an amino acid based PEU polymer or terpolymer having one or more allyl functional groups; preparing a thiol functionalized zwitterionic compound; and reacting the allyl functionalized PEU polymer or terpolymer with the thiol functionalized zwitterionic compound to form a degradable PEU-based adhesion barrier having an amino acid based PEU backbone having zwitterionic side chains.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: October 3, 2023
    Assignees: The University of Akron, Cook Medical Technologies LLC
    Inventors: Matthew Becker, Nathan Z. Dreger, Zachary K. Zander, Trenton Parsell, Michael Hiles
  • Publication number: 20230272159
    Abstract: In one or more embodiments, the present invention provides am method of making a poly(propylene fumarate-co-succinate) (PPFS) copolymer containing a random incorporation of succinate groups and targetable reduction profiles without the need for three or more monomer units. To achieve this, a time-dependent sonication-promoted zinc/acetic acid reduction of the PPM unsaturated double bonds has been used to create a random PPMS copolymer which may be isomerized into the PPFS equivalent. By changing the sonication time as well as the ratios of acetic acid, zinc, and PPM unsaturated alkenes, partial reduction of the PPM alkenes has been shown to give PPMS products containing varying compositions of succinic and maleate units, which may then be isomerized to the PPFS product.
    Type: Application
    Filed: July 15, 2021
    Publication date: August 31, 2023
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew Becker, Garrett Fredric Bass
  • Publication number: 20230148372
    Abstract: In various embodiments, the present invention is directed to ABA triblock copolymers having crosslinkable poly(propylene fumarate A blocks and a more flexible poly(lactone) B block formed by sequential ring-opening polymerization and ring-opening copolymerization. These ABA triblock polymers made using ring-opening polymerization of one or more lactone monomers using a bifunctional initiator to form a poly(lactone) B block having terminal hydroxyl groups and the ring-opening copolymerization of maleic anhydride and propylene oxide followed by isomerization of the maleate double bond using an organic base to form the poly(propylene fumarate)(PPF) A blocks. When crosslinked photochemically using, for example, a continuous liquid interface production digital light processing (DLP) Carbon M2 printer, these ABA type triblock copolymers form durable elastomers with tunable degradation and elastic properties.
    Type: Application
    Filed: October 28, 2022
    Publication date: May 11, 2023
    Applicant: Duke University
    Inventors: Matthew BECKER, Shannon PETERSEN
  • Patent number: 11499008
    Abstract: An end and monomer functionalized poly(propylene fumarate) polymer and methods for preparing this polymer, comprising isomerized residue of a maleic anhydride monomer and a functionalized propylene oxide monomer according to the formula: where n is an integer from more than 1 to 100; R is the residue of an initiating alcohol having a propargyl, norbornene, ketone or benzyl functional group; and R? is a second functional group selected from the group consisting of propargyl groups, 2-nitrophenyl groups, and combinations thereof are disclosed. The end and monomer functional groups allow for post-polymerization modification with bioactive materials using “click” chemistries and use of the polymer for a variety of applications in medical fields, including, for example, 3-D printed polymer scaffold.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 15, 2022
    Assignee: University of Akron
    Inventors: Matthew Becker, James A. Wilson, Yusheng Chen
  • Patent number: 11435540
    Abstract: A cable management system includes a cap that cooperates with a housing to enclose a connection between a first cable and a second cable. The cap defines a first port and a second port through which cables extend into the housing. A base is to be coupled to the cap. The base includes a first clamp that protrudes from a surface of the base and maintains an alignment of a portion of the first cable with the first port. The base also includes a base interlock portion. A first cable guide, separate from the base, is to be installed on the cap to maintain an alignment of a portion of the second cable. The first cable guide includes a second clamp, and a first cable guide interlock portion that cooperates with the base interlock portion to interfere with separation of the first cable guide from the base.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: September 6, 2022
    Assignee: PREFORMED LINE PRODUCTS CO.
    Inventors: Ashley Elizabeth Briskey, Daniel J. Levac, Darnell Johnson, John Lee Jones, Micheal Ma, Matthew Becker
  • Patent number: 11428293
    Abstract: A clamp, and cable management system including the clamp, includes a bolster with a first clamping surface, and a keeper that is to be coupled to the bolster. The keeper is adjustable relative to the bolster to establish a first separation of the keeper from the first clamping surface of the bolster, and a second separation of the keeper from the first clamping surface of the bolster. The first separation is different from the second separation. The keeper includes a second clamping surface configured to cooperate with a first object having a first exterior dimension, and a third clamping surface, different from the second clamping surface, that is configured to cooperate with a second object having a second exterior dimension.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 30, 2022
    Assignee: PREFORMED LINE PRODUCTS CO.
    Inventors: Ashley Elizabeth Briskey, Daniel J. Levac, Darnell Johnson, John Lee Jones, Micheal Ma, Matthew Becker
  • Patent number: 11225543
    Abstract: In one or more embodiments, the present invention provides a novel approach to the addition of plasticizers for softening TPUs, i.e., lowering the durometer and the melt viscosity. This approach involves incorporating bonded sulfonate groups with quaternary ammonium counterions into the TPU. In one or more embodiments of the present invention, the softening of TPU is achieved by incorporating an ionic diol, such as N,N-bis (2-hydroxyethyl)-2-aminoethane-sulfonic acid (BES), coupled with various bulky alkyl ammonium cations, during the chain extension step of the TPU synthesis. It is believed that that steric hindrance of the bulky quaternary ammonium groups weakens the dipole-dipole interactions of the sulfonate groups and/or lowers the crystallinity of the hard block, thereby creating additional free volume that softens the polymer and lowers the melt viscosity.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: January 18, 2022
    Assignee: The University of Akron
    Inventors: Matthew Becker, Robert A. Weiss, Zachary Kurtiss Zander, Don S. Wardius, Karl W. Haider, Bruce D. Lawrey
  • Publication number: 20210371645
    Abstract: In one or more embodiments, the present invention provides a low molecular weight, non-toxic, resorbable poly(ethylene glycol) (PEG)-block-poly(propylene fumarate) (PPF) diblock copolymers and poly(propylene fumarate) (PPF)-block-poly(ethylene glycol) (PEG)-block-poly(propylene fumarate) (PPF) triblock copolymers (and related methods for their making and use) that permits hydration for the formation of such things as hydrogels and has constrained and predictable material properties suitable for 3D printing and drug delivery applications. Using continuous digital light processing (cDLP) hydrogels the diblock and triblock copolymers can be photochemically printed from an aqueous solution into structures having a 10-fold increase in elongation at break compared to traditional diethyl fumarate (DEF) based printing. Furthermore, PPF-PEG-PPF triblock hydrogels have also been found in vitro to be biocompatible across a number of engineered MC3T3, NIH3T3, and primary Schwann cells.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 2, 2021
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew BECKER, James A. WILSON, Rodger A. DILLA
  • Publication number: 20210316038
    Abstract: In various embodiments, the present invention is directed to a drug-loaded amino acid based poly(ester urea) pouch or pocket sized to receive implanted devices that produces localized drug delivery. In some embodiments, the present invention is directed to an antibiotic-loaded L-Valine poly(ester urea) pouch or pocket that provides localized antibiotic delivery for CIEDs or other implanted devices. In one or more embodiments, the amount and rate of antibiotic release are dependent upon the thickness and loading concentration of the film. This dependence of release on thickness and loading concentration gives a handle to fabricate PEU-A pouches or pockets with any desired release profile that can locally deliver the therapeutically relevant amount of antibiotic.
    Type: Application
    Filed: March 23, 2021
    Publication date: October 14, 2021
    Inventors: Matthew BECKER, Shantanu Pratap NIKAM, Arthur ALFARO
  • Publication number: 20210284791
    Abstract: In various embodiments, the present invention is directed to a PPF-based copolymer for 3D printing applications and methods for its making and use. These copolymers have a viscosity in a printable viscosity range and allow light transmittance at curing wavelengths. In various embodiments, a lower viscosity copolymers are obtained by substitution of a portion of maleic anhydride with succinic anhydride and then forming a poly(propylene fumarate-co-succinate) copolymer by the copolymerization of maleic anhydride and succinic anhydride with propylene oxide via Mg(BHT)2(THF)2 catalyzed ring opening copolymerization (ROCOP). Because of their lower viscosities, these copolymers require less, if any, diethyl fumarate (DEF) to prepare the 3D printing resin, while the mechanical properties can still be adjusted as with a PPF polymer prepared without the succinic anhydride.
    Type: Application
    Filed: July 15, 2019
    Publication date: September 16, 2021
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew BECKER, Yongjun SHIN, Gaelle LE FER
  • Patent number: 11103613
    Abstract: In various aspects, the present invention provides a degradable and resorbable novel phosphate functionalized amino acid-based poly(ester urea) adhesive and related methods for its synthesis and use. These adhesives are formed from phosphate functionalized PEU polymers and copolymers crosslinked using one or more divalent metal crosslinking agents. The phosphate functionalized amino acid-based poly(ester urea) adhesives of various embodiments of the present invention have been found particularly effective in bonding bone to either bone or metal and have demonstrated adhesive strengths on bone samples that were significant and comparable to commercially available poly(methyl methacrylate) bone cement.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 31, 2021
    Assignee: The University of Akron
    Inventors: Matthew Becker, Vrushali Dinkar Bhagat
  • Publication number: 20210212807
    Abstract: In various embodiments, the present invention is directed to a degradable poly(ester urea) (PEU)-based adhesion barrier, particularly suitable for use in connection with surgical mesh repair in the treatment of hernias and other soft tissue injuries comprising an amino acid based poly(ester urea) backbone and one or more zwitterionic side chains connected to the amino acid based poly(ester urea) backbone through a sulfide bond. In some other embodiments, the present invention is directed to method of making the PEU-based adhesion barriers comprising: preparing an amino acid based PEU polymer or terpolymer having one or more allyl functional groups; preparing a thiol functionalized zwitterionic compound; and reacting the allyl functionalized PEU polymer or terpolymer with the thiol functionalized zwitterionic compound to form a degradable PEU-based adhesion barrier having an amino acid based PEU backbone having zwitterionic side chains.
    Type: Application
    Filed: May 7, 2019
    Publication date: July 15, 2021
    Inventors: Matthew BECKER, Nathan Z. DREGER, Zachary K. ZANDER, Trenton PARSELL, Michael HILES
  • Patent number: 11041039
    Abstract: In one or more embodiments, the present invention provides a novel approach to the addition of plasticizers for softening TPUs, i.e., lowering the durometer and the melt viscosity. This approach involves incorporating bonded sulfonate groups with quaternary ammonium counterions into the TPU. In one or more embodiments of the present invention, the softening of TPU is achieved by incorporating an ionic diol, such as N,N-bis (2-hydroxyethyl)-2-aminoethane-sulfonic acid (BES), coupled with various bulky alkyl ammonium cations, during the chain extension step of the TPU synthesis. It is believed that that steric hindrance of the bulky quaternary ammonium groups weakens the dipole-dipole interactions of the sulfonate groups and/or lowers the crystallinity of the hard block, thereby creating additional free volume that softens the polymer and lowers the melt viscosity.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: June 22, 2021
    Assignees: Covestro LLC, The University of Akron
    Inventors: Matthew Becker, Robert A. Weiss, Zachary Kurtiss Zander, Don S. Wardius, Karl W. Haider, Bruce D. Lawrey