Patents by Inventor Matthew Becker

Matthew Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9988492
    Abstract: Amino acid-based poly(ester urea)s (PEU) are emerging as a class of polymers that have shown promise in regenerative medicine applications. Embodiments of the invention relate to the synthesis of PEUs carrying pendent “clickable” groups on modified tyrosine amino acids. The pendent species include alkyne, azide, alkene, tyrosine-phenol, and ketone groups. PEUs with Mw exceeding 100k Da were obtained via interfacial polycondensation methods and the concentration of pendent groups was varied by copolymerization. The incorporation of derivatizable functionalities is demonstrated using 1H NMR and UV-Vis spectroscopy methods. Electrospinning was used to fabricate PEU nanofibers with a diameters ranging from 350 nm to 500 nm. The nanofiber matricies possess mechanical strengths suitable for tissue engineering (Young's modulus: 300±45 MPa; tensile stress: 8.5±1.2 MPa).
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 5, 2018
    Assignee: The University of Akron
    Inventors: Matthew Becker, Fei Lin
  • Publication number: 20170355815
    Abstract: The present invention provides a low molecular mass PPF polymer (and related methods) that is suitable for 3D printing and other polymer device fabrication modalities and can be made inexpensively in commercially reasonable quantities. These novel low molecular mass PPF polymers have a low molecular mass distribution (m) and a wide variety of potential uses, particularly as a component in resins for 3D printing of medical devices. The ability to produce low m PPF creates a new opportunity for reliable GMP production of PPF. It provides low cost synthesis and scalability of synthesis, blending of well-defined mass and viscosity PPF, and reduced reliance on solvents or heat to (a) achieve mixing of 3D printable resins or (b) and flowability during 3D printing. These PPF polymers are non-toxic, degradable, and resorbable and can be used in tissue scaffolds and medical devices that are implanted within a living organism.
    Type: Application
    Filed: November 18, 2015
    Publication date: December 14, 2017
    Applicants: THE UNIVERSITY OF AKRON, THE OHIO STATE UNIVERSITY
    Inventors: Matthew BECKER, Howard DEAN, Yuanyuan LUO
  • Publication number: 20170293036
    Abstract: A radiation detection system is disclosed comprising of number of detector elements arranged in a regular pattern that allows for directional information to be collected based on the number of radiation interaction events in each detection element. This system is mounted to an unmanned vehicle. In some embodiments, this information is used by the motion control unit of the unmanned vehicle to guide its movement toward a radiation source. A radiation spectrometer, also integrated in the detection system, is able to identify radiation sources.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 12, 2017
    Applicant: Oregon State University
    Inventors: Abdollah Tavakoli Farsoni, Eric Matthew Becker
  • Patent number: 9758671
    Abstract: The present invention is directed to a covalently crosslinked hydrogel comprising the strain-promoted reaction product of an 8-member cycloalkyne functionalized polyalkylene glycol and a multi-arm glycerol exytholate triazide and methods for making them. Because the precursor materials can be manipulated without causing crosslinking, provided the strain threshold is not reached, these hydrogels permit mechanical control over when (and where) cross linking occurs and are easier to use than prior strain-activated or temperature-activated systems. These novel hydrogels do not require a catalyst to cross link, thus avoiding the biocompatibility problems common to many catalysts. Nor is the crosslinking process affected by the presence of catalysts or other substances, which have interfered with crosslinking in known strain induced hydrogels.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: September 12, 2017
    Inventors: Matthew Becker, Robert A. Weiss
  • Patent number: 9745414
    Abstract: One or more embodiments of the present invention provide a hyperbranched amino-acid-based PEU polymer for use in regenerative medicine and/or drug delivery applications has tunable mechanical and thermal properties, but is sufficiently stable to permit such things as ethyloxide sterilization without degradation and/or significant loss of function. These hyperbranched amino acid-based poly(ester urea) (PEU) by interfacial polycondensation between linear and branched amino acid-based polyester monomers and a urea forming material such as trisphosgene or phosgene. By controlling the amount of branched monomer incorporated into the copolymer, the mechanical properties and water uptake abilities of the resulting hyperbranched amino acid-based PEUs may be tuned. The hyperbranched PEUs nanofibers are sterilizable with ETO and are stable for long periods of ETO sterilization, elevated temperature and exposure to aqueous environments.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 29, 2017
    Inventors: Matthew Becker, Jiayi Yu
  • Publication number: 20170210852
    Abstract: The present invention is directed to a novel group of amino acid-based poly(ester urea)s (PEUs) for use in biodegradable adhesive and related methods for their making and use. These novel amino acid-based PEUs have a wide variation in mechanical properties and degradation behavior that can be tuned by varying the amino acids and polyols used to form the polyester monomers that form the PEUs. Importantly, these novel PEUs have been shown to be non-toxic in vitro and in vivo and may be suitable to a wide variety of biomedical and other uses. In some embodiments, the adhesive properties of these degradable amino acid-based poly(ester urea) adhesives has been further improved by the incorporation of controlled amounts of catechol functional groups into the side chains of the PEU via post-polymerization functionalization chemistry.
    Type: Application
    Filed: July 21, 2015
    Publication date: July 27, 2017
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew BECKER, Jinjun ZHOU, Adrian DEFANTE, Ali DHINOJWALA
  • Publication number: 20170189531
    Abstract: In various aspects, embodiments of the present invention are directed to a series of multivalent dendrons containing a bioactive peptide domain and surface-binding catechol domains. In some embodiments, these multivalent dendrons were obtained through solid phase synthesis and have a strong binding affinity to metal oxide surfaces such as, TiO2, ZrO2, CeO2, and Fe3O4, SiO2, as well as other inorganic surfaces such as hydroxyapatite, silver, fluorapatite, calcium carbonate and gold. These catechol-bearing dendrons provide a fast and efficient method to functionalize a wide range of inorganic materials with bioactive peptides and have the potential to be used in coating orthopaedic implants and fixation devices.
    Type: Application
    Filed: July 13, 2015
    Publication date: July 6, 2017
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: MATTHEW BECKER, Wen TANG
  • Publication number: 20170086978
    Abstract: The present invention relates to a polymer scaffold design and method for treating segmental long bone defects without amputation that permits permanent regrowth of bone in the area of the segmental defect, without external fixation or other problems inherent in current systems. The polymer scaffold is preferably made from a poly(ester urea) polymer and includes an outer shell, sized to fit over a segmental defect in a bone, and a collagen containing material. In some embodiments, the collagen containing material is placed in a polymer insert sized to fit within the segmental bone defect and within said outer shell. In some embodiments, the outer shell may contain struts running longitudinal struts along the inside surface of the outer shell. In some of these embodiments, the insert will have a corresponding set of grooves sized to receive the struts.
    Type: Application
    Filed: May 13, 2015
    Publication date: March 30, 2017
    Applicants: The University of Akron, Houston Methodist Hospital
    Inventors: Matthew Becker, Ennio Tasciotti, Bradley Weiner, Avraam Isayev
  • Patent number: 9587070
    Abstract: A method of creating biocompatible polymeric structures includes the steps of: providing a biocompatible polymer including a strained cycloalkyne end group; forming a polymeric structure from the biocompatible polymer such that the strained cycloalkyne end group remains on the biocompatible polymer; providing an azide tethered molecule; and, after forming the polymeric structure, reacting the azide tethered molecule with the cycloalkyne in an azide alkyne cycloaddition reaction to further functionalize the polymeric structure.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: March 7, 2017
    Inventors: Matthew Becker, Jukuan Zheng
  • Publication number: 20160347900
    Abstract: In one or more embodiments, the present invention provides a novel approach to the addition of plasticizers for softening TPUs, i.e., lowering the durometer and the melt viscosity. This approach involves incorporating bonded sulfonate groups with quaternary ammonium counterions into the TPU. In one or more embodiments of the present invention, the softening of TPU is achieved by incorporating an ionic diol, such as N,N-bis (2-hydoxyethyl)-2-aminoethane-sulfonic acid (BES), coupled with various bulky alkyl ammonium cations, during the chain extension step of the TPU synthesis. It is believed that that steric hindrance of the bulky quaternary ammonium groups weakens the dipole-dipole interactions of the sulfonate groups and/or lowers the crystallinity of the hard block, thereby creating additional free volume that softens the polymer and lowers the melt viscosity.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 1, 2016
    Inventors: Matthew BECKER, Robert A. Weiss, Zachary Kurtiss Zander, Don S. Wardius, Karl W. Haider, Bruce D. Lawrey
  • Publication number: 20160250382
    Abstract: Embodiments relate to amino acid-based poly(ester urea)s with amino acid residues selected L-leucine, L-isoleucine, L-valine or combinations thereof. The amino acid-based poly(ester urea)S may optionally include a second amino acid residue selected from proteinogenic amino acids and non-proteinogenic amino acids. The amino acid-based poly(ester urea)s are particular useful for the preparation of vascular grafts. Due to the biocompatibility of the amino acid-based poly(ester urea)s, vascular grafts prepared from amino acid-based poly(ester urea)s with small internal diameters (i.e. less than 5 mm) may be prepared and inserted into a patient or animal, and provide a substantial decrease in the risk of failure compared to conventional polymers used in vascular grafts.
    Type: Application
    Filed: October 29, 2014
    Publication date: September 1, 2016
    Applicant: The University of Akron
    Inventors: Matthew Becker, Darrell Reneker, Yaohua Gao
  • Publication number: 20160237212
    Abstract: Amino acid-based poly(ester urea)s (PEU) are emerging as a class of polymers that have shown promise in regenerative medicine applications. Embodiments of the invention relate to the synthesis of PEUs carrying pendent “clickable” groups on modified tyrosine amino acids. The pendent species include alkyne, azide, alkene, tyrosine-phenol, and ketone groups. PEUs with Mw exceeding 100k Da were obtained via interfacial polycondensation methods and the concentration of pendent groups was varied by copolymerization. The incorporation of derivatizable functionalities is demonstrated using 1H NMR and UV-Vis spectroscopy methods. Electrospinning was used to fabricate PEU nanofibers with a diameters ranging from 350 nm to 500 nm. The nanofiber matricies possess mechanical strengths suitable for tissue engineering (Young's modulus: 300±45 MPa; tensile stress: 8.5±1.2 MPa).
    Type: Application
    Filed: September 30, 2014
    Publication date: August 18, 2016
    Applicant: The University of Akron
    Inventors: MATTHEW BECKER, Fei Lin
  • Publication number: 20160130390
    Abstract: One or more embodiments of the present invention provide a hyperbranched amino-acid-based PEU polymer for use in regenerative medicine and/or drug delivery applications has tunable mechanical and thermal properties, but is sufficiently stable to permit such things as ethyloxide sterilization without degradation and/or significant loss of function. These hyperbranched amino acid-based poly(ester urea) (PEU) by interfacial polycondensation between linear and branched amino acid-based polyester monomers and a urea forming material such as trisphosgene or phosgene. By controlling the amount of branched monomer incorporated into the copolymer, the mechanical properties and water uptake abilities of the resulting hyperbranched amino acid-based PEUs may be tuned. The hyperbranched PEUs nanofibers are sterilizable with ETO and are stable for long periods of ETO sterilization, elevated temperature and exposure to aqueous environments.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 12, 2016
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew Becker, Jiayi Yu
  • Publication number: 20150197600
    Abstract: A method of creating biocompatible polymeric structures includes the steps of: providing a biocompatible polymer including a strained cycloalkyne end group; forming a polymeric structure from the biocompatible polymer such that the strained cycloalkyne end group remains on the biocompatible polymer; providing an azide tethered molecule; and, after forming the polymeric structure, reacting the azide tethered molecule with the cycloalkyne in an azide alkyne cycloaddition reaction to further functionalize the polymeric structure.
    Type: Application
    Filed: July 31, 2013
    Publication date: July 16, 2015
    Applicant: The University of Akron
    Inventors: Matthew Becker, Jukuan Zheng
  • Publication number: 20150183988
    Abstract: The present invention is directed to a covalently crosslinked hydrogel comprising the strain-promoted reaction product of an 8-member cycloalkyne functionalized polyalkylene glycol and a multi-arm glycerol exytholate triazide and methods for making them. Because the precursor materials can be manipulated without causing crosslinking, provided the strain threshold is not reached, these hydrogels permit mechanical control over when (and where) cross linking occurs and are easier to use than prior strain-activated or temperature-activated systems. These novel hydrogels do not require a catalyst to cross link, thus avoiding the biocompatibility problems common to many catalysts. Nor is the crosslinking process affected by the presence of catalysts or other substances, which have interfered with crosslinking in known strain induced hydrogels.
    Type: Application
    Filed: July 31, 2013
    Publication date: July 2, 2015
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Matthew Becker, Robert A. Weiss
  • Publication number: 20140171619
    Abstract: A method for creating a peptide crosslinked bioactive polymeric material includes reacting a hydroxy-functionalized small molecule with a amino acid to form an amino acid functionalized monomer, reacting the amino acid functionalized monomer with a urea bond former to form a amino acid-based poly(ester urea), and reacting the amino acid-based poly(ester urea) with a peptide based crosslinker to form the peptide crosslinked bioactive polymeric material.
    Type: Application
    Filed: May 25, 2012
    Publication date: June 19, 2014
    Applicant: The University of Akron
    Inventors: Matthew Becker, Matthew Graham, Frank Harris, Fei Lin
  • Publication number: 20110166938
    Abstract: A web conversion method based on phone calls is disclosed. Some embodiments comprise distributing a multiplicity of ads across a multiplicity of online media channels, displaying a unique advertiser phone number on each ad for a limited time every time a prospect visits a webpage hosting the ad, determining that the prospect called the advertiser phone number within the limited time, determining that the geographical zone of the prospect at the time of the call encompasses the geographical location of the IP address at where the unique phone number is displayed, and charging an advertiser for the ad that displayed the advertiser phone number.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Applicant: BIONIC CLICK LLC
    Inventors: Alexander Deridder, Matthew Becker, Stephen Moore
  • Patent number: 7900098
    Abstract: In one embodiment, the present invention includes a system having an electromagnetic coupler probe to electromagnetically sample signals from a device under test or a link under test and a receiver, e.g., configured as an integrated circuit that is to receive the sampled electromagnetic signals from the probe and output digital signals corresponding thereto. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: March 1, 2011
    Assignee: Intel Corporation
    Inventors: Matthew Becker, Zibing Yang, Qiang Zhang, Todd Hinck, Larry Tate
  • Publication number: 20090243638
    Abstract: In one embodiment, the present invention includes a system having an electromagnetic coupler probe to electromagnetically sample signals from a device under test or a link under test and a receiver, e.g., configured as an integrated circuit that is to receive the sampled electromagnetic signals from the probe and output digital signals corresponding thereto. Other embodiments are described and claimed.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 1, 2009
    Inventors: Matthew Becker, Zibing Yang, Qiang Zhang, Todd Hinck, Larry Tate
  • Patent number: D740410
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: October 6, 2015
    Assignee: TELEFLEX MEDICAL INCORPORATED
    Inventors: Chris Korkuch, Drew Pieprzyk, Jeff Kuehn, Matthew Becker