Patents by Inventor Matthew Donahoe

Matthew Donahoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12097957
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: September 24, 2024
    Assignee: Skydio, Inc.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20240310834
    Abstract: In some examples, one or more processors of an aerial vehicle access a scan plan including a sequence of poses for the aerial vehicle to assume to capture, using the one or more image sensors, images of a scan target. A next pose of the scan plan is checked for obstructions, and based at least on detection of an obstruction, the one or more processors determine whether a backup pose is available for capturing an image of the targeted point orthogonally along a normal of the targeted point. Responsive to determining that the backup pose is unavailable for capturing an image of the targeted point orthogonally along the normal of the targeted point, image capture of the targeted point is performed at an oblique angle to the normal of the targeted point.
    Type: Application
    Filed: November 27, 2023
    Publication date: September 19, 2024
    Inventors: Peter HENRY, Jack ZHU, Brian RICHMAN, Harrison ZHENG, Hayk MARTIROSYAN, Matthew DONAHOE, Abraham BACHRACH, Adam BRY, Ryan David KENNEDY, Himel MONDAL, Quentin Allen Wah Yen DELEPINE
  • Publication number: 20240295876
    Abstract: In some examples, one or more processors of an unmanned aerial vehicle (UAV), control a propulsion mechanism of the UAV to cause the UAV to navigate to a plurality of positions in relation to a scan target. Using one or more image sensors of the UAV, a first image of the scan target is captured from a first position of the plurality of positions, and a second image of the scan target is captured from a second position of the plurality of positions. A disparity is determined between the first image captured at the first position and the second image captured at the second position. A three-dimensional model corresponding to the scan target is determined based in part on the disparity determined between the first image and the second image.
    Type: Application
    Filed: November 27, 2023
    Publication date: September 5, 2024
    Inventors: Peter HENRY, Jack ZHU, Brian RICHMAN, Harrison ZHENG, Hayk MARTIROSYAN, Matthew DONAHOE, Abraham BACHRACH, Adam BRY, Ryan David KENNEDY, Himei MONDAL, Quentin Allen Wah Yen DELEPINE
  • Publication number: 20240278912
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
    Type: Application
    Filed: February 7, 2024
    Publication date: August 22, 2024
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20240273894
    Abstract: Systems and methods are disclosed for tracking objects in a physical environment using visual sensors onboard an autonomous unmanned aerial vehicle (UAV). In certain embodiments, images of the physical environment captured by the onboard visual sensors are processed to extract semantic information about detected objects. Processing of the captured images may involve applying machine learning techniques such as a deep convolutional neural network to extract semantic cues regarding objects detected in the images. The object tracking can be utilized, for example, to facilitate autonomous navigation by the UAV or to generate and display augmentative information regarding tracked objects to users.
    Type: Application
    Filed: December 29, 2023
    Publication date: August 15, 2024
    Applicant: Skydio, Inc.
    Inventors: Saumitro Dasgupta, Hayk Martirosyan, Hema Koppula, Alex Kendall, Austin Stone, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 12025983
    Abstract: In some examples, an image of a scan target is presented in a user interface on a display associated with a computing device. The user interface receives at least one user input indicating at least one point in a perimeter or edge of a volume for encompassing the scan target presented in the image of the scan target. A graphical representation of the volume in relation to the image of the scan target is generated in the user interface. Information for defining a location of at least a portion of the volume in three-dimensional space is sent to an unmanned aerial vehicle (UAV) to cause, at least in part, the UAV to scan at least a portion of the scan target corresponding to the volume.
    Type: Grant
    Filed: July 17, 2023
    Date of Patent: July 2, 2024
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 12007763
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: June 11, 2024
    Assignee: Skydio, Inc.
    Inventors: Abraham Bachrach, Adam Bry, Matthew Donahoe
  • Patent number: 11952116
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: April 9, 2024
    Assignee: Skydio, Inc.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Patent number: 11940795
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: March 26, 2024
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20240069547
    Abstract: Methods and systems are disclosed for an unmanned aerial vehicle (UAV) configured to autonomously navigate a physical environment while capturing images of the physical environment. In some embodiments, the motion of the UAV and a subject in the physical environment may be estimated based in part on images of the physical environment captured by the UAV. In response to estimating the motions, image capture by the UAV may be dynamically adjusted to satisfy a specified criterion related to a quality of the image capture.
    Type: Application
    Filed: September 7, 2023
    Publication date: February 29, 2024
    Applicant: Skydio, Inc.
    Inventors: Hayk Martirosyan, Adam Bry, Matthew Donahoe, Abraham Bachrach, Justin Michael Sadowski
  • Publication number: 20240053771
    Abstract: Techniques are described for controlling an autonomous vehicle such as an unmanned aerial vehicle (UAV) using objective-based inputs. In an embodiment, the underlying functionality of an autonomous navigation system is exposed via an application programming interface (API) allowing the UAV to be controlled through specifying a behavioral objective, for example, using a call to the API to set parameters for the behavioral objective. The autonomous navigation system can then incorporate perception inputs such as sensor data from sensors mounted to the UAV and the set parameters using a multi-objective motion planning process to generate a proposed trajectory that most closely satisfies the behavioral objective in view of certain constraints. In some embodiments, developers can utilize the API to build customized applications for the UAV. Such applications, also referred to as “skills,” can be developed, shared, and executed to control behavior of an autonomous UAV and aid in overall system improvement.
    Type: Application
    Filed: July 21, 2023
    Publication date: February 15, 2024
    Applicant: Skydio, Inc.
    Inventors: Jack Louis Zhu, Hayk Martirosyan, Abraham Bachrach, Matthew Donahoe, Patrick Lowe, Kristen Marie Holtz, Adam Bry
  • Patent number: 11861892
    Abstract: Systems and methods are disclosed for tracking objects in a physical environment using visual sensors onboard an autonomous unmanned aerial vehicle (UAV). In certain embodiments, images of the physical environment captured by the onboard visual sensors are processed to extract semantic information about detected objects. Processing of the captured images may involve applying machine learning techniques such as a deep convolutional neural network to extract semantic cues regarding objects detected in the images. The object tracking can be utilized, for example, to facilitate autonomous navigation by the UAV or to generate and display augmentative information regarding tracked objects to users.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: January 2, 2024
    Assignee: Skydio, Inc.
    Inventors: Saumitro Dasgupta, Hayk Martirosyan, Hema Koppula, Alex Kendall, Austin Stone, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11829141
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may identify a scan target. The UAV may navigate to two or more positions in relation to the scan target. The UAV may capture, using one or more image sensors of the UAV, two or more images of the scan target from different respective positions in relation to the scan target. For instance, the two or more respective positions may be selected by controlling a spacing between the two or more respective positions to enable determination of parallax disparity between a first image captured at a first position and a second image captured at a second position of the two or more positions. The UAV may determine a three-dimensional model corresponding to the scan target based in part on the determined parallax disparity of the two or more images including the first image and the second image.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: November 28, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11829142
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: November 28, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Publication number: 20230359205
    Abstract: In some examples, an image of a scan target is presented in a user interface on a display associated with a computing device. The user interface receives at least one user input indicating at least one point in a perimeter or edge of a volume for encompassing the scan target presented in the image of the scan target. A graphical representation of the volume in relation to the image of the scan target is generated in the user interface. Information for defining a location of at least a portion of the volume in three-dimensional space is sent to an unmanned aerial vehicle (UAV) to cause, at least in part, the UAV to scan at least a portion of the scan target corresponding to the volume.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11797009
    Abstract: Methods and systems are disclosed for an unmanned aerial vehicle (UAV) configured to autonomously navigate a physical environment while capturing images of the physical environment. In some embodiments, the motion of the UAV and a subject in the physical environment may be estimated based in part on images of the physical environment captured by the UAV. In response to estimating the motions, image capture by the UAV may be dynamically adjusted to satisfy a specified criterion related to a quality of the image capture.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: October 24, 2023
    Assignee: Skydio, Inc.
    Inventors: Hayk Martirosyan, Adam Bry, Matthew Donahoe, Abraham Bachrach, Justin Michael Sadowski
  • Publication number: 20230324911
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.
    Type: Application
    Filed: January 20, 2023
    Publication date: October 12, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
  • Patent number: 11755041
    Abstract: Techniques are described for controlling an autonomous vehicle such as an unmanned aerial vehicle (UAV) using objective-based inputs. In an embodiment, the underlying functionality of an autonomous navigation system is exposed via an application programming interface (API) allowing the UAV to be controlled through specifying a behavioral objective, for example, using a call to the API to set parameters for the behavioral objective. The autonomous navigation system can then incorporate perception inputs such as sensor data from sensors mounted to the UAV and the set parameters using a multi-objective motion planning process to generate a proposed trajectory that most closely satisfies the behavioral objective in view of certain constraints. In some embodiments, developers can utilize the API to build customized applications for the UAV. Such applications, also referred to as “skills,” can be developed, shared, and executed to control behavior of an autonomous UAV and aid in overall system improvement.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: September 12, 2023
    Assignee: Skydio, Inc.
    Inventors: Jack Louis Zhu, Hayk Martirosyan, Abraham Bachrach, Matthew Donahoe, Patrick Lowe, Kristen Marie Holtz, Adam Bry
  • Publication number: 20230280742
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described.
    Type: Application
    Filed: January 31, 2023
    Publication date: September 7, 2023
    Applicant: Skydio, Inc.
    Inventors: Abraham Bachrach, Adam Bry, Matthew Donahoe
  • Publication number: 20230244234
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 3, 2023
    Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine