Patents by Inventor Matthew Donahoe
Matthew Donahoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230324911Abstract: In some examples, an unmanned aerial vehicle (UAV) may include one or more processors configured to capture, with one or more image sensors, and while the UAV is in flight, a plurality of images of a target. The one or more processors may compare a first image of the plurality of images with a second image of the plurality of images to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. In addition, the one or more processors may determine, based at least on the difference, and while the UAV is in flight, an update to a three-dimensional model of the target.Type: ApplicationFiled: January 20, 2023Publication date: October 12, 2023Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
-
Patent number: 11755041Abstract: Techniques are described for controlling an autonomous vehicle such as an unmanned aerial vehicle (UAV) using objective-based inputs. In an embodiment, the underlying functionality of an autonomous navigation system is exposed via an application programming interface (API) allowing the UAV to be controlled through specifying a behavioral objective, for example, using a call to the API to set parameters for the behavioral objective. The autonomous navigation system can then incorporate perception inputs such as sensor data from sensors mounted to the UAV and the set parameters using a multi-objective motion planning process to generate a proposed trajectory that most closely satisfies the behavioral objective in view of certain constraints. In some embodiments, developers can utilize the API to build customized applications for the UAV. Such applications, also referred to as “skills,” can be developed, shared, and executed to control behavior of an autonomous UAV and aid in overall system improvement.Type: GrantFiled: June 28, 2021Date of Patent: September 12, 2023Assignee: Skydio, Inc.Inventors: Jack Louis Zhu, Hayk Martirosyan, Abraham Bachrach, Matthew Donahoe, Patrick Lowe, Kristen Marie Holtz, Adam Bry
-
Publication number: 20230280742Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described.Type: ApplicationFiled: January 31, 2023Publication date: September 7, 2023Applicant: Skydio, Inc.Inventors: Abraham Bachrach, Adam Bry, Matthew Donahoe
-
Publication number: 20230244233Abstract: In some examples, an unmanned aerial vehicle (UAV) may identify a scan target. The UAV may navigate to two or more positions in relation to the scan target. The UAV may capture, using one or more image sensors of the UAV, two or more images of the scan target from different respective positions in relation to the scan target. For instance, the two or more respective positions may be selected by controlling a spacing between the two or more respective positions to enable determination of parallax disparity between a first image captured at a first position and a second image captured at a second position of the two or more positions. The UAV may determine a three-dimensional model corresponding to the scan target based in part on the determined parallax disparity of the two or more images including the first image and the second image.Type: ApplicationFiled: March 13, 2023Publication date: August 3, 2023Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
-
Publication number: 20230244234Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.Type: ApplicationFiled: March 13, 2023Publication date: August 3, 2023Inventors: Peter HENRY, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
-
Patent number: 11703864Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine, based on a three-dimensional (3D) model including a plurality of points corresponding to a scan target, a scan plan for scanning at least a portion of the scan target. For instance, the scan plan may include a plurality of poses for the UAV to assume to capture images of the scan target. The UAV may capture with one or more image sensors, one or more images of the scan target from one or more poses of the plurality of poses. Further, the UAV may determine an update to the 3D model based at least in part on the one or more images. Additionally, the UAV may update the scan plan based at least in part on the update to the 3D model.Type: GrantFiled: February 12, 2021Date of Patent: July 18, 2023Assignee: SKYDIO, INC.Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
-
Publication number: 20230185301Abstract: Methods and systems are disclosed for an unmanned aerial vehicle (UAV) configured to autonomously navigate a physical environment while capturing images of the physical environment. In some embodiments, the motion of the UAV and a subject in the physical environment may be estimated based in part on images of the physical environment captured by the UAV. In response to estimating the motions, image capture by the UAV may be dynamically adjusted to satisfy a specified criterion related to a quality of the image capture.Type: ApplicationFiled: August 30, 2022Publication date: June 15, 2023Applicant: Skydio, Inc.Inventors: Hayk Martirosyan, Adam Bry, Matthew Donahoe, Abraham Bachrach, Justin Michael Sadowski
-
Patent number: 11573562Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described.Type: GrantFiled: October 22, 2020Date of Patent: February 7, 2023Assignee: Skydio, Inc.Inventors: Abraham Bachrach, Adam Bry, Matthew Donahoe
-
Patent number: 11573544Abstract: In some examples, an unmanned aerial vehicle (UAV) employs one or more image sensors to capture images of a scan target and may use distance information from the images for determining respective locations in three-dimensional (3D) space of a plurality of points of a 3D model representative of a surface of the scan target. The UAV may compare a first image with a second image to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. Further, based at least on the difference, the UAV may determine, while the UAV is in flight, an update to the 3D model including at least one of an updated location of at least one point in the 3D model, or a location of a new point in the 3D model.Type: GrantFiled: February 12, 2021Date of Patent: February 7, 2023Assignee: SKYDIO, INC.Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Bachrach, Adam Bry, Ryan David Kennedy, Himel Mondal, Quentin Allen Wah Yen Delepine
-
Publication number: 20230021969Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.Type: ApplicationFiled: August 18, 2022Publication date: January 26, 2023Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
-
Publication number: 20220415185Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.Type: ApplicationFiled: August 18, 2022Publication date: December 29, 2022Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
-
Publication number: 20220406193Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle.Type: ApplicationFiled: August 18, 2022Publication date: December 22, 2022Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
-
Publication number: 20220390940Abstract: In some examples, a computing apparatus may include one or more non-transitory computer-readable storage media and program instructions stored on the one or more computer-readable storage media that, when executed by one or more processors, direct the computing apparatus to perform various steps. For example, the program instructions may continually present a graphical user interface (GUI) at the computing apparatus including a display of a current view of the physical environment from a perspective of an aerial vehicle. The program instructions may detect user interactions with the GUI while the aerial vehicle is in flight. The user interactions may include instructions directing the aerial vehicle to maneuver within the physical environment and configure parameters for scanning a three-dimensional (3D) scan volume. The program instruction may then transmit, to the aerial vehicle, data encoding the instructions for performing a 3D scan of the 3D scan volume.Type: ApplicationFiled: June 2, 2022Publication date: December 8, 2022Inventors: Brian Richman, Matthew Thomas Beaudouin-Lafon, Charles VanSchoonhoven Wood, Peter Benjamin Henry, Jack Louis Zhu, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
-
Patent number: 11460844Abstract: Methods and systems are disclosed for an unmanned aerial vehicle (UAV) configured to autonomously navigate a physical environment while capturing images of the physical environment. In some embodiments, the motion of the UAV and a subject in the physical environment may be estimated based in part on images of the physical environment captured by the UAV. In response to estimating the motions, image capture by the UAV may be dynamically adjusted to satisfy a specified criterion related to a quality of the image capture.Type: GrantFiled: July 29, 2021Date of Patent: October 4, 2022Assignee: Skydio, Inc.Inventors: Hayk Martirosyan, Adam Bry, Matthew Donahoe, Abraham Bachrach, Justin Michael Sadowski
-
Publication number: 20220309687Abstract: Systems and methods are disclosed for tracking objects in a physical environment using visual sensors onboard an autonomous unmanned aerial vehicle (UAV). In certain embodiments, images of the physical environment captured by the onboard visual sensors are processed to extract semantic information about detected objects. Processing of the captured images may involve applying machine learning techniques such as a deep convolutional neural network to extract semantic cues regarding objects detected in the images. The object tracking can be utilized, for example, to facilitate autonomous navigation by the UAV or to generate and display augmentative information regarding tracked objects to users.Type: ApplicationFiled: April 4, 2022Publication date: September 29, 2022Applicant: Skydio, Inc.Inventors: Saumitro Dasgupta, Hayk Martirosyan, Hema Koppula, Alex Kendall, Austin Stone, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
-
Patent number: 11455895Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.Type: GrantFiled: August 6, 2020Date of Patent: September 27, 2022Assignee: Skydio, Inc.Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
-
Patent number: 11455894Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.Type: GrantFiled: June 8, 2020Date of Patent: September 27, 2022Assignee: Skydio, Inc.Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
-
Patent number: 11295458Abstract: Systems and methods are disclosed for tracking objects in a physical environment using visual sensors onboard an autonomous unmanned aerial vehicle (UAV). In certain embodiments, images of the physical environment captured by the onboard visual sensors are processed to extract semantic information about detected objects. Processing of the captured images may involve applying machine learning techniques such as a deep convolutional neural network to extract semantic cues regarding objects detected in the images. The object tracking can be utilized, for example, to facilitate autonomous navigation by the UAV or to generate and display augmentative information regarding tracked objects to users.Type: GrantFiled: November 30, 2017Date of Patent: April 5, 2022Assignee: Skydio, Inc.Inventors: Saumitro Dasgupta, Hayk Martirosyan, Hema Koppula, Alex Kendall, Austin Stone, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
-
Publication number: 20220057799Abstract: Methods and systems are disclosed for an unmanned aerial vehicle (UAV) configured to autonomously navigate a physical environment while capturing images of the physical environment. In some embodiments, the motion of the UAV and a subject in the physical environment may be estimated based in part on images of the physical environment captured by the UAV. In response to estimating the motions, image capture by the UAV may be dynamically adjusted to satisfy a specified criterion related to a quality of the image capture.Type: ApplicationFiled: July 29, 2021Publication date: February 24, 2022Applicant: Skydio, Inc.Inventors: Hayk Martirosyan, Adam Bry, Matthew Donahoe, Abraham Bachrach, Justin Michael Sadowski
-
Publication number: 20220019248Abstract: A technique is described for controlling an autonomous vehicle such as an unmanned aerial vehicle (UAV) using objective-based inputs. In an embodiment, the underlying functionality of an autonomous navigation system is via an application programming interface (API). In such an embodiment, the UAV can be controlled trough specifying a behavioral objective, for example, using a call to the API to set parameters for the behavioral objective. The autonomous navigation system can then incorporate perception inputs such as sensor data from sensors mounted to the UAV and the set parameters using a multi-objective motion planning process to generate a proposed trajectory that most closely satisfies the behavioral objective in view of certain constraints. In some embodiments, developers can utilize the API to build customized applications for utilizing the UAV to capture images.Type: ApplicationFiled: June 28, 2021Publication date: January 20, 2022Applicant: Skydio, Inc.Inventors: Jack Louis Zhu, Hayk Martirosyan, Abraham Bachrach, Matthew Donahoe, Patrick Lowe, Kristen Marie Holtz, Adam Bry