Patents by Inventor Matthew E Colburn

Matthew E Colburn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210155584
    Abstract: The disclosure provides recording materials including aromatic substituted methane-core derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed for monomers and polymers for use in Bragg gratings applications leading to materials with higher refractive index, low birefringence, and high transparency. The disclosed derivatized monomers and polymers thereof can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: Lafe PURVIS, Austin LANE, Matthew E. COLBURN
  • Publication number: 20210155581
    Abstract: The disclosure provides recording materials including aromatic substituted ethane-core derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed for monomers and polymers for use in Bragg gratings applications, leading to materials with higher refractive index, low birefringence, and high transparency. The disclosed derivatized monomers and polymers thereof can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: Lafe PURVIS, Austin LANE, Matthew E. COLBURN
  • Publication number: 20210155639
    Abstract: The disclosure provides recording materials including thiophosphate derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed for thiophosphate derivatized monomers and polymers for use in Bragg gratings applications, leading to materials with higher refractive index, low birefringence, and high transparency. The disclosed thiophosphate derivatized monomers and polymers thereof can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: Austin LANE, Matthew E. COLBURN, Lafe PURVIS
  • Publication number: 20210155599
    Abstract: The disclosure provides recording materials including aromatic substituted alkane-core derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed, including Formula I. When used in Bragg gratings applications, the monomers and polymers disclosed lead to materials with higher refractive index, low birefringence, and high transparency. The disclosed derivatized monomers and polymers can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: Lafe PURVIS, Austin LANE, Matthew E. COLBURN
  • Publication number: 20210155585
    Abstract: The disclosure provides recording materials including anthraquinone derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed for anthraquinone derivatized monomers and polymers for use in Bragg gratings applications, leading to materials with higher refractive index, low birefringence, and high transparency. The disclosed anthraquinone derivatized monomers and polymers thereof can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventors: Lafe PURVIS, Austin LANE, Matthew E. COLBURN
  • Patent number: 11018007
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 25, 2021
    Assignee: Tessera, Inc.
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10996382
    Abstract: An optical device with a variable index of refraction is formed by exposing a film to an energy gradient. The optical device has angular selectivity. The optical device can be used as an output coupler for a waveguide used in a virtual-reality and/or augmented-reality apparatus.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: May 4, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Giuseppe Calafiore, Austin Lane, Matthew E. Colburn
  • Patent number: 10983257
    Abstract: A lithographic patterning of a resist is performed to create a mandrel over a substrate. A deposition of one or more functional materials on the mandrel is performed. And each functional material has a respective refractive index. A selective removal of the mandrel is performed to create a plurality of grating elements formed from the one or more functional materials. The plurality of grating elements are self-aligned and form a diffraction grating. Each grating element may have a heterogenous refractive index (e.g., substantial normal to and/or parallel to a surface of the substrate). The diffraction grating may be used in a near-eye display.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: April 20, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Matthew E. Colburn, Giuseppe Calafiore, Matthieu Charles Raoul Leibovici, Maxwell Parsons
  • Patent number: 10976483
    Abstract: Disclosed herein are techniques for fabricating straight or slanted variable-etch-depth gratings. A photoresist material for fabricating a variable-etch-depth grating in a substrate is sensitive to light with a wavelength shorter than 300 nm and has an etch rate comparable to the etch rate of the substrate. A depth of an exposed portion of a photoresist material layer including the photoresist material correlates with the exposure dose. After exposure using a gray-scale mask and development, the photoresist material layer has a non-uniform thickness. The photoresist material layer with the non-uniform thickness and the underlying substrate are etched using a straight etching or slanted etching process to form the straight or slanted variable-etch-depth grating in the substrate. The variable-etch-depth grating is characterized by a non-uniform depth profile corresponding to the non-uniform thickness of the photoresist material layer before etching.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: April 13, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Ankit Vora, Nihar Ranjan Mohanty, Austin Lane, Matthew E. Colburn, Elliott Franke
  • Publication number: 20210103087
    Abstract: An optical element includes a transparent layer, outcoupling elements, and a waveguide structure. The outcoupling elements are positioned across the transparent layer. The waveguide structure provides non-visible light to the outcoupling elements and the outcoupling elements outcouple the non-visible light as non-visible illumination light to illuminate an eye region.
    Type: Application
    Filed: May 19, 2020
    Publication date: April 8, 2021
    Inventors: Guohua Wei, Qi Zhang, Andrew John Ouderkirk, Matthew E Colburn
  • Patent number: 10962703
    Abstract: Provided herein are compositions comprising functionalized gallium-based semiconductor nanoparticles for use in nanoprint resins and high-index overcoat materials. Also provided are methods of manufacturing functionalized gallium-based semiconductor nanoparticles and nanoprint resins and high-index overcoat materials using gallium-based semiconductor nanoparticles.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: March 30, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Austin Lane, Matthew E. Colburn, Giuseppe Calafiore
  • Patent number: 10957583
    Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; an ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10914944
    Abstract: A system comprises a plurality of laser generators, each generating a coherent beam, the plurality of laser generators arranged such that at least two of the generated coherent beams intersect with each other. The system further comprises an anti-refraction prism. The anti-refraction prism has a plurality of incident surfaces. The anti-refraction prism also has an egress surface facing a photosensitive film layer, with the coherent beams interfering within the anti-refraction prism and exiting at the egress surface to create an interference exposure pattern at an exposure region of the photosensitive film layer. Furthermore, the anti-refraction prism has a refraction index within a threshold range of the refraction index of the photosensitive film layer, and wherein the anti-refraction prism reduces a change in angle of each coherent beam in the photosensitive film layer due to refraction.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: February 9, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Matthieu Charles Raoul Leibovici, Matthew E. Colburn
  • Patent number: 10895671
    Abstract: Ion implantation is used to fabricate an optical device having a varying refractive index. The optical device can include a substrate with a material disposed on the substrate. A refractive index of the material is changed by ion implantation. The material can also be etched or imprinted. The optical device can be used in a virtual-reality system or augmented-reality system to provide angular selectivity from a display to a user's eye.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 19, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Giuseppe Calafiore, Austin Lane, Matthew E. Colburn, Nihar Ranjan Mohanty
  • Patent number: 10838121
    Abstract: A three-dimensional diffraction grating is generated by selective deposition and/or selective etching. The three-dimensional diffraction grating includes a substrate and a plurality of structures located at different positions on the substrate. The structures have different materials. Edges of at least some of the structures are aligned. The three-dimensional diffraction grating includes different materials and aligned edges in all three dimensions. With the different materials and aligned edges, the three-dimensional diffraction gratings is configured to eliminate display artifacts, such as ghost, rainbow, etc.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 17, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Nihar Ranjan Mohanty, Giuseppe Calafiore, Matthew E. Colburn, Austin Lane, Matthieu Charles Raoul Leibovici
  • Publication number: 20200356049
    Abstract: Techniques disclosed herein relate to holographic optical materials and elements. An example of a holographic recording material includes matrix monomers characterized by a first refractive index and configured to polymerize to form a polymer matrix, writing monomers dispersed in the matrix monomers and characterized by a second refractive index different from the first refractive index, and a photocatalyst for controlled radical polymerization of the writing monomers. The writing monomers are configured to polymerize upon exposed to recording light. The photocatalyst is dispersed in the matrix monomers. The photocatalyst includes, for example, a transition metal photocatalyst or a metal-free organic photocatalyst, such as a photocatalyst for atom transfer radical polymerization or a transition metal photocatalyst for addition fragmentation chain transfer polymerization.
    Type: Application
    Filed: April 3, 2020
    Publication date: November 12, 2020
    Inventors: Austin Lane, Matthew E. Colburn
  • Publication number: 20200354311
    Abstract: The disclosure provides recording materials include fluorene derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several fluorene structures are disclosed: simply substituted fluorenes, cardo-fluorenes, and spiro-fluorenes. Fluorene derivatized polymers in Bragg gratings applications lead to materials with higher refractive index, low birefringence, and high transparency. Fluorene derivatized monomers/polymers can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 12, 2020
    Inventors: Austin LANE, Matthew E. COLBURN, Lafe PURVIS
  • Publication number: 20200354594
    Abstract: The disclosure provides thermally reversible and reorganizable polymers for volume Bragg gratings. These polymers can be used in any volume Bragg gratings materials, but they are particularly useful in two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer. The reorganizable polymers are part of the matrix, and when heat is applied, specific crosslinked bonds break up allowing the material to relax, and permitting more monomers for the second writing step to enter the matrix. When heat is removed, crosslinking bonds re-form but with different, reorganized, bonding partners.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 12, 2020
    Inventors: Austin LANE, Matthew E. COLBURN
  • Publication number: 20200354496
    Abstract: The disclosure provides specific initiator/mediator chemistry for latent imaging polymers for volume Bragg gratings. Light mediated chemistry including the use of nitroxides allows a first step imaging to occur, where a light induced pattern is recorded in the material, without the grating being apparent. A second bleaching/developing step completes the curing process and reveals the grating.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 12, 2020
    Inventors: Austin LANE, Matthew E. COLBURN
  • Publication number: 20200355997
    Abstract: The disclosure provides thianthrene derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several thianthrene structures are described, including structures substituted by halogens, sulphur containing groups, phenyl groups, at least one polymerizable group, etc. Thianthrene derivatized polymers in Bragg gratings applications lead to materials with higher refractive index, low birefringence, and less packing in solid state. Thianthrene derivatized monomers/polymers can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 12, 2020
    Inventors: Austin LANE, Matthew E. COLBURN, Lafe PURVIS