Patents by Inventor Matthew Goodman

Matthew Goodman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050183829
    Abstract: Improvements in the design of a low mass wafer holder are disclosed. The improvements include the use of peripherally located, integral lips to space a wafer or other substrate above the base plate of the wafer holder. A uniform gap is thus provided between the wafer and the base plate, such as will temper rapid heat exchanges, allow gas to flow between the wafer and wafer holder during wafer pick-up, and keep the wafer holder thermally coupled with the wafer. At the same time, thermal disturbance from lip contact with the wafer is reduced. Gas flow during pick-up can be provided through radial channels in a wafer holder upper surface, or through backside gas passages. A thicker ring is provided at the wafer holder perimeter, and is provided in some embodiments as an independent piece to accommodate stresses accompanying thermal gradients. Self-centering mechanisms are provided to keep the wafer holder centered relative to a spider which is subject to differential thermal expansion.
    Type: Application
    Filed: March 21, 2005
    Publication date: August 25, 2005
    Inventors: Matthew Goodman, Ivo Raaijmakers, Loren Jacobs, Franciscus van Bilsen, Michael Meyer, Eric Barrett
  • Publication number: 20050176252
    Abstract: Disclosed herein is an apparatus and method for treating the frontside and backside of a semiconductor substrate with a process gas. A reactor chamber is equipped with a first load platform configured to permit the access of a process gas to both sides of a substrate. In some embodiments, the apparatus also comprises a second load platform configured for further processing the frontside of the substrate. The substrate is loaded on the first load platform and processed on both sides, then moved to the second load platform and processed on one side.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 11, 2005
    Inventors: Matthew Goodman, Ravinder Aggarwal, Mark Hawkins, Tony Keeton
  • Publication number: 20050092439
    Abstract: A substrate holder for processing a semiconductor substrate that minimizes substrate non-uniformities as well as backside damage. The substrate holder includes one or more support elements, such as a plurality of veins configured in an annular ring to support an outer edge of a substrate. The veins are configured to support a substrate of a particular size in a support plane defined by the top surfaces of the veins. The substrate holder also has one or more annular grooves formed in the top surface of the holder. In a preferred embodiment, the substrate holder also has a raised annular ring positioned radially inward of the grooves and the support elements. The top surface of the raised annular ring is no higher that the top surfaces of the veins.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 5, 2005
    Inventors: Tony Keeton, Matthew Goodman, Michael Stamp
  • Publication number: 20050011458
    Abstract: A wafer holder for supporting a wafer within a CVD processing chamber includes a vertically moveable lift ring configured to support the bottom peripheral surface of the wafer, and an inner plug having a top flat surface configured to support the wafer during wafer processing. The lift ring has a central aperture configured to closely surround the inner plug. When a wafer is to be loaded onto the wafer holder, the lift ring is elevated above the inner plug. The wafer is loaded onto the lift ring in the elevated position. Then, the lift ring is maintained in the elevated position for a time period sufficient to allow the wafer temperature to rise to a level that is sufficient to significantly reduce or even substantially prevent thermal shock to the wafer when the wafer is brought into contact with the inner plug. The lift ring is then lowered into surrounding engagement with the inner plug. This is the wafer processing position of the wafer holder.
    Type: Application
    Filed: July 30, 2004
    Publication date: January 20, 2005
    Inventors: Ravinder Aggarwal, Tony Keeton, Matthew Goodman
  • Publication number: 20040198153
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: August 18, 2003
    Publication date: October 7, 2004
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Publication number: 20030075274
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: September 13, 2002
    Publication date: April 24, 2003
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6491757
    Abstract: An apparatus for processing a substrate comprises a susceptor for supporting the substrate, an upper heat source spaced above the susceptor, a lower heat source spaced below the susceptor, and a controller. The controller provides power to the heat sources at a selected ratio between the sources. The controller is configured to vary the ratio during a high temperature processing cycle of a substrate to thereby vary the ratio of the heat provided by the heat sources during the cycle.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: December 10, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6454866
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 24, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6343183
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 29, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Publication number: 20010054390
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: August 17, 2001
    Publication date: December 27, 2001
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6113702
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: September 5, 2000
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton