Patents by Inventor Matthew H. Frey
Matthew H. Frey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250091320Abstract: Articles are described comprising a first substrate and a second substrate. At least one adhesive layer is disposed between the first and second substrates. The article further comprises a multilayer film within at least a portion of the adhesive layer(s). Also described is a method of disassembly comprising providing an adhesively bonded article as described herein; and separating the first substrate from the second substrate by delaminating the (e.g. multilayer) film. In other embodiments, adhesive articles (e.g. tape) are described comprising a (e.g. multilayer) film and methods of making adhesively bonded articles that comprise a (e.g. multilayer) film. Also described are methods of reworking, repairing, repurposing, or recycling an article, and articles.Type: ApplicationFiled: December 3, 2024Publication date: March 20, 2025Inventors: Matthew H. Frey, Jacob P. Podkaminer, Ashley J. Smith, Stephen A. Johnson, Christoph Kuesters, Zhou Jin, Yunshu Zhang, Matthew T. Johnson, Luis E. Sotelo Martin, William T. Fay, Jason C. Anderson, Joseph J. Benson
-
Publication number: 20240377912Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Patent number: 12115737Abstract: The present disclosure provides a thermally conductive article including a pad having first and second opposed major surfaces and a thickness therebetween. The thickness is formed of entangled thermally conductive fibers and at least a portion of the entangled thermally conductive fibers have at least one terminal end at the first opposed major surface, the opposed second major surface, or both. The pad is at least partially impregnated with a polymer. Another thermally conductive article is provided including a) a pad having first and second opposed major surfaces and a thickness therebetween; b) a first thermally conductive skin layer; and c) a second thermally conductive skin layer. The thickness of the pad is formed of aligned thermally conductive fibers, and at least a portion of the thermally conductive fibers have a terminal end at the first opposed major surface and the opposed second major surface.Type: GrantFiled: February 18, 2021Date of Patent: October 15, 2024Assignee: 3M Innovative Properties CompanyInventors: Jacob P. Podkaminer, Jens Eichler, Peter J. Schneider, Sebastian Goris, Victor Ho, Joseph A. Dunbar, Matthew T. Johnson, Matthew H. Frey
-
Patent number: 12099223Abstract: An optical construction includes a reflective polarizer layer having a first pass axis and an absorptive polarizer layer having a second pass axis that is substantially aligned with the first pass axis. At least one electrically conductive light scattering layer is arranged between the reflective polarizer layer and the absorptive polarizer layer.Type: GrantFiled: May 22, 2019Date of Patent: September 24, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew H. Frey, Craig R. Schardt, Gary T. Boyd, Eric J. Borchers, Nicole D. Petkovich
-
Patent number: 12093490Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: GrantFiled: October 18, 2023Date of Patent: September 17, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Publication number: 20240239991Abstract: A shaped thermal filler particle has an elongate shape defined by a substantially planar first smooth surface and a second smooth surface that contacts the substantially planar first smooth surface along a planar closed path. The planar closed path has a length to width ratio of at least 1.5. The shaped thermal filler particle has a maximum linear dimension normal to the planar first smooth surface that is less than or equal to one half of the length of the closed path. A thermally conductive composition comprises from 1 to 95 percent by volume of the shaped thermal filler particles dispersed in a binder. An assembly comprises a heat source, a heat sink, and the thermally conductive composition at least partially sandwiched between the heat source and the heat sink.Type: ApplicationFiled: July 22, 2021Publication date: July 18, 2024Inventors: Jacob P. Podkaminer, Matthew H. Frey, Victor Ho, Matthew T. Johnson, Jeremy K. Larsen, Craig W. Lindsay, Kyle C. Picha, Mario A. Perez
-
Publication number: 20240045549Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: ApplicationFiled: October 18, 2023Publication date: February 8, 2024Inventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Patent number: 11822750Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: GrantFiled: March 6, 2023Date of Patent: November 21, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Publication number: 20230339194Abstract: The present disclosure provides a thermally conductive article including a pad having first and second opposed major surfaces and a thickness therebetween. The thickness is formed of entangled thermally conductive fibers and at least a portion of the entangled thermally conductive fibers have at least one terminal end at the first opposed major surface, the opposed second major surface, or both. The pad is at least partially impregnated with a polymer. Another thermally conductive article is provided including a) a pad having first and second opposed major surfaces and a thickness therebetween; b) a first thermally conductive skin layer; and c) a second thermally conductive skin layer. The thickness of the pad is formed of aligned thermally conductive fibers, and at least a portion of the thermally conductive fibers have a terminal end at the first opposed major surface and the opposed second major surface.Type: ApplicationFiled: February 18, 2021Publication date: October 26, 2023Inventors: Jacob P. Podkaminer, Jens Eichler, Peter J. Schneider, Sebastian Goris, Victor Ho, Joseph A. Dunbar, Matthew T. Johnson, Jay B. Preston, Matthew H. Frey, Eric L. Askeland, Steven D. Solomonson, Sung W. Moon, Michael P. Wald
-
Publication number: 20230323131Abstract: A decorated particle comprises a single inorganic particle core having an uneven outer surface with a plurality of crevices and an average particle diameter of 20 to 150 microns. A binder retaining decorating particles is disposed on at least a portion of the outer surface of the inorganic particle core and fills the crevices. The decorating particles have an average particle diameter of 0.05 to 10 microns. A method of making decorated particles is also disclosed.Type: ApplicationFiled: September 3, 2021Publication date: October 12, 2023Inventors: Yongbeom Seo, Matthew H. Frey, Jacob P. Podkaminer, Victor Ho, Samuel J. Carpenter, Audrey S. Forticaux, Lalitha V. N. R. Ganapatibhotla, Taisiya Skorina, Jeremy M. Higgins, Yangbin Chen
-
Publication number: 20230299384Abstract: A thermal management assembly comprises an electrochemical cell, a heat sink, and a thermal pathway comprising a thermally interruptible interface interposed therebetween the electrochemical cell and the heat sink. The thermal pathway comprises an expandable material comprising intumescent particles. If heated to at least a first onset temperature, the expandable material expands and causes at least partial shear delamination at the first thermally interruptible interface. A composite thermal management article comprises a first layer comprising an expandable material comprising intumescent particles and a second layer comprising a thermal conductor material. The first and second layers contact each other at a thermally interruptible interface.Type: ApplicationFiled: August 6, 2021Publication date: September 21, 2023Inventors: Victor Ho, Jacob P. Podkaminer, Matthew T. Johnson, Matthew H. Frey, Samuel J. Carpenter, Brandon A. Bartling
-
Publication number: 20230205372Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: ApplicationFiled: March 6, 2023Publication date: June 29, 2023Inventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Patent number: 11620024Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: GrantFiled: July 25, 2022Date of Patent: April 4, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Publication number: 20220380617Abstract: A PTSM-coated expandable microsphere comprises a polymer shell enclosing an interior volume containing at least one blowing agent. The polymer shell has an outer surface with photothermal susceptor material disposed on at least a portion thereof. If heated to at least one temperature greater than 25° C., each of the expandable microspheres expands, but does not rupture, the polymer shell by a sufficient amount to at least double the interior volume. A markable comprises a substrate and a viewable layer secured thereto. The viewable layer comprises a binder material retaining the PTSM-coated expandable microspheres. A method of marking a markable article comprises imagewise exposing the PTSM-coated expandable microspheres of the markable article to at least sufficient electromagnetic radiation to cause the PTSM-coated expandable microspheres to expand thereby creating a predetermined image. A marked article preparable according to the method is also disclosed.Type: ApplicationFiled: November 9, 2020Publication date: December 1, 2022Inventors: Joshua M. Fishman, Sean M. Sweetnam, Jeffrey P. Kalish, Caitlin E. Meree, Badri Veeraraghavan, Matthew H. Frey
-
Publication number: 20220357808Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: ApplicationFiled: July 25, 2022Publication date: November 10, 2022Inventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Patent number: 11493673Abstract: Article (9,19) comprising a substrate (10, 20) comprising a polymer and having first (11,21) and second (12, 22) opposed major surfaces. The first major surface (11, 21) has first surface regions (13, 23) with first nanoparticles (14a, 14b, 14c, 14d, 24a, 24b, 24c, 24d) partially embedded into the first major surface (11, 21), and one of •(a) second surface regions (15) free of nanoparticles; or •(b) second surface regions (25) with at least second nanoparticles (28) on the first major surface (11, 21) or partially embedded into the first major surface (11, 21). The first surface regions (13, 23) have a first average surface roughness, Ra1, of at least 20 nm, wherein the second surface regions (15, 25) have a second average surface roughness, Ra2, of less than 100 nm, wherein the first average surface roughness, Ra1, is greater than the second average surface roughness, Ra2, and wherein there is an absolute difference between the first and second average surface roughness of at least 10 nm.Type: GrantFiled: June 20, 2018Date of Patent: November 8, 2022Assignee: 3M Innovative Properties CompanyInventors: Matthew H. Frey, Megan A. Creighton, Morgan A. Priolo, Benjamin R. Coonce
-
Patent number: 11449181Abstract: Articles comprising a substrate having a first major surface; an electrical conductor pattern on the first major surface of the substrate, the electrical conductor pattern comprising a plurality of separated pairs of separated first and second electrically conductive metallic traces. Optionally the articles further comprise a first electrically conductive layer. Embodiments of articles described herein are useful in, for example, displays, touch sensors, lighting elements, photovoltaic cells, electrochromic windows and displays, and electroluminescent lamps and displays.Type: GrantFiled: August 9, 2018Date of Patent: September 20, 2022Assignee: 3M Innovative Properties CompanyInventors: Matthew H. Frey, Brock A. Hable, Thomas Herdtle
-
Patent number: 11429231Abstract: A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.Type: GrantFiled: November 3, 2020Date of Patent: August 30, 2022Assignee: 3M Innovative Properties CompanyInventors: Matthew H. Frey, Michael J. Robrecht, George F. Jambor
-
Publication number: 20220259465Abstract: A core-sheath filament having a) a core that is a thermally conductive pressure-sensitive adhesive particles and b) a non-tacky, thermoplastic sheath is provided. The thermally conductive pressure-sensitive adhesive in the core includes a (meth)acrylate-based polymeric material and thermally conductive particles. Additionally, methods of making the core-sheath filament and methods of using the core-sheath filament to print a thermally conductive pressure-sensitive adhesive are described.Type: ApplicationFiled: August 6, 2020Publication date: August 18, 2022Inventors: Alexander J. Kugel, Mario A. Perez, Sebastian Goris, Matthew H. Frey, Ross E. Behling, Mark E. Napierala, Thomas Q. Chastek, Jacob D. Young, Shaun M. West, Tomoaki Uchiya
-
Publication number: 20210292570Abstract: The present disclosure provides an article including an organic layer having a nanostructured first surface including nanofeatures defining nanorecesses and an opposing second surface; and a ceramic layer disposed on the nanostructured first surface of the organic layer and filling at least a portion of the nanorecesses. The ceramic layer has a nanostructured first surface including nanofeatures and an opposing second surface, and the nanostructured first surface of the ceramic layer is interpenetrated with the nanostructured first surface of the organic layer. The present disclosure also provides a method of making the article. The method includes obtaining an organic layer having a nanostructured first surface including nanofeatures defining nanorecesses and an opposing second surface; and filling at least a portion of the nanorecesses of the nanostructured first surface of the organic layer with a ceramic material to form the article.Type: ApplicationFiled: August 19, 2019Publication date: September 23, 2021Inventors: Matthew H. Frey, Ta-Hua Yu, Moses M. David, Richard J. Pokorny, Jun Ma