Patents by Inventor Matthew J. McMahon

Matthew J. McMahon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10780272
    Abstract: The present invention is a fitting system with a graphical interface with specific interface screens for specific functions. Methods and devices for fitting a visual prosthesis are described. In one of the methods, threshold levels and maximum levels for the electrodes of the prosthesis are determined and a map of brightness to electrode stimulation levels is later formed. A fitting system for a visual prosthesis is also discussed, together with a computer-operated system having a graphical user interface showing visual prosthesis diagnostic screens and visual prosthesis configuration screens.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: September 22, 2020
    Assignees: Second Sight Medical Products, Inc., Doheny Eye Institute
    Inventors: Matthew J. McMahon, Arup Roy, Scott Greenwald, Ione Fine, Alan Matthew Horsager, Avraham I. Caspi, Kelly Hobart McClure, Robert Jay Greenberg
  • Patent number: 9795786
    Abstract: The present invention relates to a saliency-based apparatus and methods for visual prostheses. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: October 24, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Alan Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Patent number: 9597495
    Abstract: The invention is a method of identifying a preferred location for an electrode array to the neural characteristics of an individual subject. The response to electrical neural stimulation varies from subject to subject and array location to array location. Measure of impedance may be used to predict the electrode height from the neural tissue and, thereby, predict the preferred location. Alternatively, electrode height may be measured directly to predict the preferred location.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 21, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Jone Fine, Arup Roy, Matthew J. McMahon, Mark S. Humayun, James David Welland, Alan M. Horsager, Dao Min Zhou, Amy Hines, Sumit Yadav, Rongqing Dai
  • Patent number: 9526888
    Abstract: In a visual prosthesis or other neural stimulator it is advantageous to provide non-overlapping pulses in order to provide independent control of brightness from different electrodes. Non-overlapping pulses on geographically close electrodes avoid electric-field interaction which leads to brightness summation or changes in the shape and area of percepts. It is advantageous to apply pulses to nearby electrodes in a way that the currents do not overlap in time at all. ‘Nearby’ is defined as within a few millimeters of each other. The same parameters that provide independent control of brightness also produce spatial patterns that the subjects' report as being similar to the sum of individual electrode phosphenes. Simultaneous stimulation of multiple electrodes can sometimes produce physical sensation or discomfort in the eye. Time-shifting the pulses cab also be used to reduce the physical sensations felt by the patient.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 27, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Alan M Horsager, Matthew J McMahon, Robert J Greenberg
  • Patent number: 9526894
    Abstract: A visual prosthesis and a method of operating a visual prosthesis are disclosed. Neural stimulation through electrodes is controlled by spatial maps, where a grouped or random association is established between the data points of the acquired data and the electrodes. In this way distortions from the foveal pit and wiring mistakes in the implant can be corrected. Moreover, broken electrodes can be bypassed and a resolution limit can be tested, together with testing the benefit the patient receives from correct spatial mapping.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: December 27, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Avraham Caspi, Jessy Dorn, Matthew J McMahon
  • Patent number: 9492663
    Abstract: A method of editing a video configuration file downloadable to or from a video processing unit of a fitting system for a visual prosthesis is shown. The visual prosthesis has a plurality of electrodes and the video configuration file defines mapping of a video signal captured from a camera of the visual prosthesis to an electrical signal for the electrodes. The editing controls a brightness map for an individual electrode or electrode groups, together with a temporal stimulation pattern to which an individual electrode or electrode groups are assigned. A related computer-operated system is also disclosed.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: November 15, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Arup Roy, Pishoy Maksy, Chunhong Zhou, Kelly H McClure, Robert J Greenberg, Matthew J McMahon, Avraham I Caspi
  • Patent number: 9427582
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. It is advantageous that the array edges not contact tissue.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 30, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Matthew J McMahon, Jordan Matthew Neysmith, James S Little, Neil Hamilton Talbot, Kelly H McClure, Brian V Mech
  • Patent number: 9308368
    Abstract: A visual prosthesis must convey luminance information across a range of brightness levels to accurately represent a visual scene. Thus, the brightness of phosphenes produced by individual electrodes should scale appropriately with luminance, and the same luminance should produce equivalently bright phosphenes across the entire electrode array. Given that the function relating current to brightness varies across electrodes, it is necessary to develop a fitting procedure that will permit brightness to be equated across an entire array. A visual prosthesis that generates stimuli by performing a brightness fitting that normalizes brightness across electrodes is described.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 12, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Scott H Greenwald, Matthew J McMahon, Ione Fine
  • Publication number: 20160001078
    Abstract: Saliency-based apparatus and methods for visual prostheses are disclosed. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Application
    Filed: June 23, 2015
    Publication date: January 7, 2016
    Inventors: Robert Greenberg, Alan Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Publication number: 20150306389
    Abstract: A visual prosthesis and a method of operating a visual prosthesis are disclosed. Neural stimulation through electrodes is controlled by spatial maps, where a grouped or random association is established between the data points of the acquired data and the electrodes. In this way distortions from the foveal pit and wiring mistakes in the implant can be corrected. Moreover, broken electrodes can be bypassed and a resolution limit can be tested, together with testing the benefit the patient receives from correct spatial mapping.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Robert Greenberg, Avraham Caspi, Jessy Dorn, Matthew J. McMahon
  • Patent number: 9089701
    Abstract: Techniques and functional electrical stimulation to eliminate discomfort during electrical stimulation of the retina are provided. According to a first technique, discomfort is eliminated through control of timing group assignment. According to a second technique, discomfort is eliminated through an edge detection method. According to a third technique, brightness clipping is used to eliminate discomfort. According to a fourth technique, direct reduction of current is obtained by scaling it down by a factor which is dependent on the sum of current in all electrodes. According to a fifth technique, the current being fed to each electrode is adjusted, by dividing it by a weighted sum of currents fed to the surrounding electrodes. According to a sixth technique, a method based on the current summation effect is used. According to a seventh technique, a large return electrode is used. According to an eighth technique, the return electrode is used for a pseudo-multi-polar stimulation.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: July 28, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Chunhong Zhou, Avraham I. Caspi, Kelly H. McClure, Matthew J. McMahon, Arup Roy, Robert J. Greenberg
  • Patent number: 9078739
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and The response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 14, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Patent number: 9072900
    Abstract: A visual prosthesis and a method of operating a visual prosthesis are disclosed. Neural stimulation through electrodes is controlled by spatial maps, where a grouped or random association is established between the data points of the acquired data and the electrodes. In this way distortions from the foveal pit and wiring mistakes in the implant can be corrected. Moreover, broken electrodes can be bypassed and a resolution limit can be tested, together with testing the benefit the patient receives from correct spatial mapping.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 7, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Avraham Caspi, Jessy Dorn, Matthew J. McMahon, Robert J. Greenberg
  • Patent number: 9061150
    Abstract: The present invention is a saliency-based apparatus and methods for visual prostheses. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: June 23, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Alan Matthew Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Jagdish Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Patent number: 9050468
    Abstract: A visual prosthesis apparatus including a video capture device for capturing a video image, a video processing unit associated with the video capture device, the video processing unit configured to convert the video image to stimulation patterns, and a stimulation system configured to stimulate subject's neural tissue based on the stimulation patterns, wherein the stimulation system provides a span of visual angle matched to the subject's neural tissue being stimulated.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 9, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Arup Roy, Avraham I Caspi, Matthew J McMahon
  • Publication number: 20150066106
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. It is advantageous that the array edges not contact tissue.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 5, 2015
    Inventors: Robert J. Greenberg, Matthew J. McMahon, Jordan Matthew Neysmith, James S. Little, Neil Hamilton Talbot, Kelly H. McClure, Brian V. Mech
  • Publication number: 20150051666
    Abstract: A method of editing a video configuration file downloadable to or from a video processing unit of a fitting system for a visual prosthesis is shown. The visual prosthesis has a plurality of electrodes and the video configuration file defines mapping of a video signal captured from a camera of the visual prosthesis to an electrical signal for the electrodes. The editing controls a brightness map for an individual electrode or electrode groups, together with a temporal stimulation pattern to which an individual electrode or electrode groups are assigned. A related computer-operated system is also disclosed.
    Type: Application
    Filed: February 21, 2014
    Publication date: February 19, 2015
    Inventors: Arup Roy, Pishoy Maksy, Chunhong Zhou, Kelly H. McClure, Robert J. Greenberg, Matthew J. McMahon, Avraham I. Caspi
  • Patent number: 8903495
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. It is advantageous that the array edges not contact tissue.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: December 2, 2014
    Inventors: Robert J Greenberg, Matthew J McMahon, Jordan Matthew Neysmith, James S Little, Neil Hamilton Talbot, Kelly H McClure, Brian V Mech
  • Publication number: 20140200628
    Abstract: To accurately represent a visual scene a visual prosthesis must convey luminance information across a range of brightness levels. To do this, the brightness of phosphenes produced by an individual electrode should scale appropriately with luminance, and the same luminance should produce equivalently bright phosphenes across the entire electrode array. Given that the function relating current to brightness varies across electrodes, it is necessary to develop a fitting procedure that will permit brightness to be equated across an entire array. The current invention describes a method of performing a brightness fitting that normalizes brightness across electrodes. The method determines a set of parameters that are stored in the subjects Video Configuration File—the look-up table that converts the video camera input to stimulation profiles for each electrode. One electrode would be specified as the standard.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 17, 2014
    Inventors: Scott H. Greenwald, Matthew J. McMahon, Ione Fine
  • Publication number: 20140200629
    Abstract: A visual prosthesis apparatus including a video capture device for capturing a video image, a video processing unit associated with the video capture device, the video processing unit configured to convert the video image to stimulation patterns, and a stimulation system configured to stimulate subject's neural tissue based on the stimulation patterns, wherein the stimulation system provides a span of visual angle matched to the subject's neural tissue being stimulated.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Inventors: Robert J. Greenberg, Arup Roy, Avraham I. Caspi, Matthew J. McMahon