Patents by Inventor Matthew J. McMahon

Matthew J. McMahon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7765009
    Abstract: In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: July 27, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Matthew J. McMahon
  • Patent number: 7738962
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and The response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: June 15, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Patent number: 7734352
    Abstract: In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: June 8, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Matthew J. McMahon
  • Publication number: 20100087895
    Abstract: Techniques and functional electrical stimulation to eliminate discomfort during electrical stimulation of the retina are provided. According to a first technique, discomfort is eliminated through control of timing group assignment. According to a second technique, discomfort is eliminated through an edge detection method. According to a third technique, brightness clipping is used to eliminate discomfort. According to a fourth technique, direct reduction of current is obtained by scaling it down by a factor which is dependent on the sum of current in all electrodes. According to a fifth technique, the current being fed to each electrode is adjusted, by dividing it by a weighted sum of currents fed to the surrounding electrodes. According to a sixth technique, a method based on the current summation effect is used. According to a seventh technique, a large return electrode is used. According to an eighth technique, the return electrode is used for a pseudo-multi-polar stimulation.
    Type: Application
    Filed: September 17, 2009
    Publication date: April 8, 2010
    Inventors: Chunhong Zhou, Avraham I. Caspi, Kelly H. McClure, Matthew J. McMahon, Arup Roy, Robert J. Greenberg
  • Publication number: 20100057166
    Abstract: This system gives the experimenter great flexibility to present spatio-temporal stimulation patterns to a subject. A video configuration file (VCF) editor allows the experimenter to determine the electrical stimulation parameters for each electrode. A Pattern Stimulation software program allows direct stimulation of chosen patterns of electrodes, scaled by the subject's VCF, through a Graphical User Interface. The subject then responds by drawing the outline of the phosphene he or she perceives on a touchscreen. The Pattern Stimulation program saves all of the trial parameters and the parameters of an ellipse fit to their drawing, as well as a raw data file containing the input to the touchscreen is saved. After the experiment, offline image analysis can be performed to obtain a detailed quantitative description of the subject's percepts. Image descriptors can assigned to the touchscreen data; these image descriptors can be used to make formalized comparisons between various experimental conditions.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Inventors: Ashish Ahuja, Avraham Caspi, Jessy Dorn, Robert J. Greenberg, Kelly H. McClure, Matthew J. McMahon, Devyani Nanduri
  • Publication number: 20090312818
    Abstract: In a visual prosthesis or other neural stimulator it is advantageous to provide non-overlapping pulses in order to provide independent control of brightness from different electrodes. Non-overlapping pulses on geographically close electrodes avoid electric-field interaction which leads to brightness summation or changes in the shape and area of percepts. It is advantageous to apply pulses to nearby electrodes in a way that the currents do not overlap in time at all. The new finding is that even a small amount of separation results in a significant improvement as small as (ie. 0.225 msec). ‘Nearby’ is defined as within a few millimeters of each other. Another new finding is that there is some additional benefit of separating the pulses in time even further. In particular, some experiments showed a benefit of separating them more than 1.8 msec. Another experiment showed a benefit of separating them greater than 3 msec. But, there is probably no benefit to separating them more than 5 msec.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 17, 2009
    Inventors: Alan M. Horsager, Robert J. Greenberg, Matthew J. McMahon
  • Publication number: 20090287276
    Abstract: The present invention is an improved method of stimulating visual neurons to create artificial vision. It has been found that varying current of visual stimulation can create varying percept brightness, varying percept size, and varying percept shape. By determining the attributes of predetermined current levels, and using those attributes to program a video processor, more accurate video preproduction can be obtained. The present invention also includes an electrode array having alternating large and small electrodes in rows at a 45 degree angle to horizontal in the visual field.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 19, 2009
    Inventors: Robert J. Greenberg, Mark S. Humayun, Matthew J. McMahon, Devyani Nanduri, James D. Weiland
  • Publication number: 20090112287
    Abstract: Saliency-based apparatus and methods for visual prostheses are disclosed. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Application
    Filed: March 6, 2008
    Publication date: April 30, 2009
    Inventors: Robert J. Greenberg, Alan Matthew Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Jagdish Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Publication number: 20080294225
    Abstract: A method of editing a video configuration file downloadable to or from a video processing unit of a fitting system for a visual prosthesis is shown. The visual prosthesis has a plurality of electrodes and the video configuration file defines mapping of a video signal captured from a camera of the visual prosthesis to an electrical signal for the electrodes. The editing controls a brightness map for an individual electrode or electrode groups, together with a temporal stimulation pattern to which an individual electrode or electrode groups are assigned. A related computer-operated system is also disclosed.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 27, 2008
    Inventors: Arup Roy, Chunhong Zhou, Kelly H. McClure, Matthew J. McMahon, Avraham I. Caspi, Pishoy Maksy, Robert J. Greenberg
  • Publication number: 20080294223
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual subject. The response to electrical neural stimulation varies from subject to subject. Measure of impedance may be used to predict the electrode height from the neural tissue and, thereby, predict the threshold of perception. Alternatively, electrode height may be measured directly to predict the threshold of perception. Also, impedance measurement may be used to quickly identify defective electrodes and proper electrode placement.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 27, 2008
    Inventors: Robert J. Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon, Mark S. Humayun, James David Weiland, Alan M. Horsager, Dao Min Zhou, Amy Hines, Sumit Yadav, Rongqing Dai
  • Publication number: 20080281377
    Abstract: A visual prosthesis and a method of operating a visual prosthesis are disclosed. Neural stimulation through electrodes is controlled by spatial maps, where a grouped or random association is established between the pixels of the acquired image and the electrodes. In this way distortions from the foveal pit and wiring mistakes in the implant can be corrected. Moreover, broken electrodes can be bypassed and a resolution limit can be tested, together with testing the benefit the patient receives from correct spatial mapping.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 13, 2008
    Inventors: Avraham Caspi, Jessy Dorn, Matthew J. McMahon, Robert J. Greenberg
  • Publication number: 20080275527
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 6, 2008
    Inventors: Robert J. Greenberg, Matthew J. McMahon, James Singleton Little, Kelly H. McClure, Brian V. Mech, Neil Hamilton Talbot, Jordan M. Neysmith
  • Publication number: 20080262570
    Abstract: A retinal stimulation system.
    Type: Application
    Filed: October 19, 2007
    Publication date: October 23, 2008
    Inventors: Robert J. Greenberg, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon
  • Publication number: 20080262569
    Abstract: A method for stimulating a subject's retina. The method comprising selecting at least a first and a second electrode each configured to apply current to a subject's retina, determining impedance for the at least first electrode and second electrode, and applying current to the subject's retina through the at least first and second electrode, wherein current to be applied by the first electrode and the second electrode is configured to be higher for the first electrode when the first electrode has an impedance lower than a second electrode's impedance.
    Type: Application
    Filed: October 19, 2007
    Publication date: October 23, 2008
    Inventors: Robert J. Greenberg, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon
  • Publication number: 20080262571
    Abstract: A method to provide visual current feedback of a retinal stimulation system. The method comprising: providing a retinal stimulation system configured to stimulate neural tissue in a subject's eye, the retinal stimulation system comprising: an electronics package; and at least a first and a second electrode, each associated with the electronics package and configured to apply current to a subject's retina; wherein current to be applied by the first electrode and the second electrode is configured to be higher for the first electrode when the first electrode has an impedance lower than a second electrode's impedance; and providing a visual interface configured to show impedance of at least one of the electrodes.
    Type: Application
    Filed: October 19, 2007
    Publication date: October 23, 2008
    Inventors: Robert J. Greenberg, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon
  • Publication number: 20080188908
    Abstract: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. The perceptual response to electrical neural stimulation varies from patient to patient and The response to electrical neural stimulation varies from patient to patient and the relationship between current and perceived brightness is often non-linear. It is necessary to determine this relationship to fit the prosthesis settings for each patient. It is advantageous to map the perceptual responses to stimuli. The method of mapping of the present invention is to provide a plurality of stimuli that vary in current, voltage, pulse duration, frequency, or some other dimension; measuring and recording the response to those stimuli; deriving a formula or equation describing the map from the individual points; storing the formula; and using that formula to map future stimulation.
    Type: Application
    Filed: October 25, 2007
    Publication date: August 7, 2008
    Inventors: Robert Jay Greenberg, Ione Fine, Arup Roy, Matthew J. McMahon
  • Publication number: 20080183244
    Abstract: A visual prosthesis apparatus including a video capture device for capturing a video image, a video processing unit associated with the video capture device, the video processing unit configured to convert the video image to stimulation patterns, and a stimulation system configured to stimulate subject's neural tissue based on the stimulation patterns, wherein the stimulation system provides a span of visual angle matched to the subject's neural tissue being stimulated.
    Type: Application
    Filed: January 31, 2008
    Publication date: July 31, 2008
    Inventors: Robert J. Greenberg, Arup Roy, Avraham I. Caspi, Matthew J. McMahon
  • Publication number: 20080125832
    Abstract: An apparatus and method for retinal stimulation are shown. The method comprises varied parameters, including frequency, pulse width, and pattern of pulse trains to determine a stimulation pattern and neural perception threshold, and creating a model based on the neural perception thresholds to optimize patterns of neural stimulation.
    Type: Application
    Filed: December 6, 2007
    Publication date: May 29, 2008
    Inventors: Alan Matthew Horsager, Scott H. Greenwald, Mark S. Humayun, Matthew J. McMahon, Ione Fine, Robert J. Greenberg, Geoffrey M. Boynton