Patents by Inventor Matthew J. Traverso

Matthew J. Traverso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200280171
    Abstract: An optical apparatus comprises a semiconductor substrate and an optical waveguide emitter. The optical waveguide emitter comprises an input waveguide section extending from a facet of the semiconductor substrate, a turning waveguide section optically coupled with the input waveguide section, and an output waveguide section extending to the same facet and optically coupled with the turning waveguide section. One or more of the input waveguide section, the turning waveguide section, and the output waveguide section comprises an optically active region.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Inventors: Dominic F. SIRIANI, Vipulkumar K. PATEL, Matthew J. TRAVERSO, Mark A. WEBSTER
  • Patent number: 10746934
    Abstract: By determining an alignment point for a photonic element in a substrate of a given material; applying, via a laser aligned with the photonic element according to the alignment point, an etching pattern to the photonic element to produce a patterned region and an un-patterned region in the photonic element, wherein applying the etching pattern alters a chemical bond in the given material for the patterned region of the photonic element that increases a reactivity of the given material to an etchant relative to a reactivity of the un-patterned region, and wherein the patterned region defines an engagement feature in the un-patterned region that is configured to engage with a mating feature on a Photonic Integrated Circuit (PIC); and removing the patterned region from the photonic element via the etchant, various systems and methods may make use of laser patterning in optical components to enable alignment of optics to chips.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 18, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar Patel, Matthew J. Traverso, Ashley J. Maker, Jock T. Bovington
  • Publication number: 20200241207
    Abstract: Using laser patterning for an optical assembly, optical features are written into photonic elements at the end of a manufacturing sequence in order to prevent errors and damages to the optical features. The optical assembly is manufactured by affixing a photonic element to a substrate which includes one or more optical features and mapping one or more optical features for the photonic element. The optical features are then written into the fixed photonic element using laser patterning and the optical assembly is completed by connecting components, such as optical fibers, to the photonic element.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Sandeep RAZDAN, Ashley J. MAKER, Jock T. BOVINGTON, Matthew J. TRAVERSO
  • Patent number: 10725240
    Abstract: A method comprises receiving, at a plurality of optical distributors of a photonic chip, optical energy from a plurality of primary laser sources. Each of the optical distributors receives optical energy from a respective primary laser source at a respective first input. The method further comprises detecting a failed primary laser source of the primary laser sources using control circuitry of a sparing system. The sparing system further comprises one or more secondary laser sources configured to provide optical energy to respective second inputs of the optical distributors. A first one of the secondary laser sources is optically coupled with at least two of the optical distributors. The method further comprises controlling, using the control circuitry, a first one of the secondary laser sources to selectively provide optical energy to the optical distributor whose first input is optically coupled with the failed primary laser source.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: July 28, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Jock T. Bovington, Matthew J. Traverso
  • Patent number: 10720995
    Abstract: The present disclosure provides signal management with unequal eye spacing by: sending, from a local transmitter, first and second signals with different first and second known eye patterns to a remote receiver over a channel; sending temperature data of the local transmitter and operating wavelength data of the first and second signals to the remote receiver over the channel; receiving, from the remote receiver, tuning parameters based on a dispersion of the channel based on a first difference between the first known eye pattern as transmitted and as received and a second difference between the second known eye pattern as transmitted and as received; and adjusting transmission rail values used to encode data for transmission over the channel by the local transmitter based on the tuning parameters to produce a conditioned signal for transmission with an unequally spaced eye pattern.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 21, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Marco Mazzini, Christopher R. S. Fludger, Alberto Cervasio, Matthew J. Traverso
  • Publication number: 20200220329
    Abstract: An optical apparatus comprises a semiconductor substrate and a slab-coupled optical waveguide (SCOW) emitter disposed on the semiconductor substrate. The SCOW emitter comprises an optical waveguide comprising: a first region doped with a first conductivity type; a second region doped with a different, second conductivity type; and an optically active region disposed between the first region and the second region. The optically active region comprises a plurality of quantum dots.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 9, 2020
    Inventors: Dominic F. SIRIANI, Jock T. BOVINGTON, Matthew J. TRAVERSO
  • Patent number: 10608410
    Abstract: The embodiments herein describe a single-frequency laser source (e.g., a distributed feedback (DFB) laser or distributed Bragg reflector (DBR) laser) that includes a feedback grating or mirror that extends along a waveguide. The grating may be disposed over a portion of the waveguide in an optical gain region in the laser source. Instead of the waveguide or cavity being linear, the laser includes a U-turn region so that two ends of the waveguide terminate at the same facet. That facet is coated with an anti-reflective (AR) coating.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 31, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew J. Traverso, Dominic F. Siriani, Mark Webster
  • Publication number: 20200088940
    Abstract: A method comprises receiving, at a plurality of optical distributors of a photonic chip, optical energy from a plurality of primary laser sources. Each of the optical distributors receives optical energy from a respective primary laser source at a respective first input. The method further comprises detecting a failed primary laser source of the primary laser sources using control circuitry of a sparing system. The sparing system further comprises one or more secondary laser sources configured to provide optical energy to respective second inputs of the optical distributors. A first one of the secondary laser sources is optically coupled with at least two of the optical distributors. The method further comprises controlling, using the control circuitry, a first one of the secondary laser sources to selectively provide optical energy to the optical distributor whose first input is optically coupled with the failed primary laser source.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Inventors: Jock T. BOVINGTON, Matthew J. TRAVERSO
  • Patent number: 10564352
    Abstract: Aspects described herein include a method comprising forming an insulator layer above a silicon layer of a silicon-on-insulator (SOI) substrate. A first optical device is formed partly in the silicon layer and partly in the insulator layer. A first optical waveguide is formed in the insulator layer and optically coupled with the first optical device. The method further comprises forming conductive contacts extending partly through the insulator layer to the first optical device, bonding a first surface of an interposer with a top surface of the insulator layer, and forming, from a second surface of the interposer opposite the first surface, a plurality of first conductive vias extending at least partly through the interposer. The plurality of first conductive vias are coupled with the conductive contacts.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 18, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Sandeep Razdan, Ashley J. Maker, Matthew J. Traverso, Mark A. Webster, Jock T. Bovington
  • Publication number: 20200049890
    Abstract: By determining an alignment point for a photonic element in a substrate of a given material; applying, via a laser aligned with the photonic element according to the alignment point, an etching pattern to the photonic element to produce a patterned region and an un-patterned region in the photonic element, wherein applying the etching pattern alters a chemical bond in the given material for the patterned region of the photonic element that increases a reactivity of the given material to an etchant relative to a reactivity of the un-patterned region, and wherein the patterned region defines an engagement feature in the un-patterned region that is configured to engage with a mating feature on a Photonic Integrated Circuit (PIC); and removing the patterned region from the photonic element via the etchant, various systems and methods may make use of laser patterning in optical components to enable alignment of optics to chips.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Vipulkumar PATEL, Matthew J. TRAVERSO, Ashley J. MAKER, Jock T. BOVINGTON
  • Patent number: 10545291
    Abstract: The embodiments herein describe an optical transmitter that integrates a SCOWA into a photonic chip that includes a modulator. The embodiments herein place the SCOWA between the laser and the modulator. To accommodate the large mode size of the waveguide in the SCOWA, the photonic chip includes a pair of spot size converters coupled to the input and output of the SCOWA. Rather than amplifying a modulated signal as is typical with an inline amplifier, the SCOWA amplifies a continuous wave (CW) optical signal generated by the laser which introduces less noise and improves the OSNR of the transmitter.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: January 28, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Dominic F. Siriani, Jock T. Bovington, Matthew J. Traverso, Vipulkumar Patel
  • Publication number: 20190326266
    Abstract: An optoelectronic assembly and methods of fabrication thereof are provided. The assembly includes a mold compound; a photonic integrated circuit (PIC) embedded in the mold compound, that has a face exposed from the mold compound in a first plane; an interposer embedded in the mold compound, that has a face exposed from the mold compound in the first plane (i.e., co-planar with the exposed face of the PIC); and an electrical integrated circuit (EIC) coupled to the exposed face of the PIC and the exposed face of the interposer, that establishes bridging electrical connections between the PIC and the interposer.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 24, 2019
    Inventors: Matthew J. TRAVERSO, Sandeep RAZDAN, Ashley J. MAKER
  • Publication number: 20190319427
    Abstract: The embodiments herein describe a single-frequency laser source (e.g., a distributed feedback (DFB) laser or distributed Bragg reflector (DBR) laser) that includes a feedback grating or mirror that extends along a waveguide. The grating may be disposed over a portion of the waveguide in an optical gain region in the laser source. Instead of the waveguide or cavity being linear, the laser includes a U-turn region so that two ends of the waveguide terminate at the same facet. That facet is coated with an anti-reflective (AR) coating.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 17, 2019
    Inventors: Matthew J. TRAVERSO, Dominic F. SIRIANI, Mark WEBSTER
  • Patent number: 10393959
    Abstract: A method comprises bonding a first surface of an interposer wafer with a first exterior surface of a photonic wafer assembly. The photonic wafer assembly comprises one or more optical devices coupled with one or more metal layers and with one or more first optical waveguides. The method further comprises forming, from a second surface opposite the first surface, a plurality of first conductive vias extending at least partway through the interposer wafer and coupled with the one or more metal layers. The method further comprises forming, at the second surface, a plurality of first conductive pads coupled with the plurality of first conductive vias. The method further comprises forming one or more second conductive pads coupled with the one or more metal layers. The one or more second conductive pads are accessible at a second exterior surface of the photonic wafer assembly opposite the first exterior surface.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 27, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Sandeep Razdan, Ashley J. Maker, Matthew J. Traverso, Mark A. Webster, Jock T. Bovington
  • Patent number: 10320151
    Abstract: The embodiments herein describe a single-frequency laser source (e.g., a distributed feedback (DFB) laser or distributed Bragg reflector (DBR) laser) that includes a feedback grating or mirror that extends along a waveguide. The grating may be disposed over a portion of the waveguide in an optical gain region in the laser source. Instead of the waveguide or cavity being linear, the laser includes a U-turn region so that two ends of the waveguide terminate at the same facet. That facet is coated with an anti-reflective (AR) coating.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 11, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew J. Traverso, Dominic F. Siriani, Mark Webster
  • Patent number: 10145758
    Abstract: Embodiments herein describe techniques for testing optical components in a photonic chip using a testing structure disposed in a sacrificial region of a wafer. In one embodiment, the wafer is processed to form multiple photonic chips integrated into the wafer. While forming optical components in the photonic chips (e.g., modulators, detectors, waveguides, etc.), a testing structure can be formed in one or more sacrificial regions in the wafer. In one embodiment, the testing structure is arranged near an edge coupler in the photonic chip such that an optical signal can be transferred between the photonic chip and the testing structure. Moreover, the testing structure has a grating coupler disposed at or near a top surface of the wafer which permits optical signals to be transmitted into, or received from, the grating coupler when an optical probe is arranged above the grating coupler.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: December 4, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew J. Traverso, Ravi S. Tummidi, Mark A. Webster, Sandeep Razdan
  • Publication number: 20180313718
    Abstract: Embodiments herein describe techniques for testing optical components in a photonic chip using a testing structure disposed in a sacrificial region of a wafer. In one embodiment, the wafer is processed to form multiple photonic chips integrated into the wafer. While forming optical components in the photonic chips (e.g., modulators, detectors, waveguides, etc.), a testing structure can be formed in one or more sacrificial regions in the wafer. In one embodiment, the testing structure is arranged near an edge coupler in the photonic chip such that an optical signal can be transferred between the photonic chip and the testing structure. Moreover, the testing structure has a grating coupler disposed at or near a top surface of the wafer which permits optical signals to be transmitted into, or received from, the grating coupler when an optical probe is arranged above the grating coupler.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicants: Cisco Technology, Inc., Cisco Technology, Inc.
    Inventors: Matthew J. TRAVERSO, Ravi S. TUMMIDI, Mark A. WEBSTER, Sandeep RAZDAN
  • Patent number: 9964719
    Abstract: The present disclosure discloses an assembly. The assembly includes a photonic chip and an electrical chip disposed side by side. The assembly also includes mold compound that encapsulates the photonic chip and the electrical chip. The assembly further includes a redistribution layer (RDL) that extends across the top surface of the photonic chip and the top surface of the electrical chip and connects the photonic chip with the electrical chip. Moreover, the photonic chip includes an exposed optical interface for transmitting optical signals between the photonic chip and an external optical device.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 8, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Sandeep Razdan, Vipulkumar Patel, Matthew J. Traverso