Patents by Inventor Matthew M. Ziegler

Matthew M. Ziegler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10789400
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: September 29, 2020
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 10263519
    Abstract: A booster for a digital circuit block provides speed and reliability at lower static power supply voltages, reducing overall power consumption of the circuits. The booster includes a transistor that couples a dynamic power supply node to a static power supply and is disabled in response to a boost clock. An inductor and capacitance, which may be the block power supply shunt capacitance, coupled to the dynamic power supply resonates so that the voltage of the dynamic power supply increases in magnitude to a value greater the static power supply voltage. A boost transistor is included in some embodiments to couple an edge of the clock to the dynamic power supply, increasing the voltage rise. Another aspect of the booster includes multiple boost transistors controlled by different boost clock phases so that the resonant boost circuit is successively stimulated to increase the amount of voltage rise.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rajiv V. Joshi, Matthew M. Ziegler
  • Publication number: 20180322226
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 10083268
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 10002221
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 9934344
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 9910949
    Abstract: In one aspect, a method for tuning input parameters to a synthesis program is provided which includes the steps of: (a) selecting a subset of parameter settings for the synthesis program based on a tuning optimization cost function; (b) individually running synthesis jobs in parallel for each of the parameter settings in the subset; (c) analyzing results from a current iteration and prior iterations, if any, using the cost function; (d) using the results from the current iteration and the prior iterations, if any, to create combinations of the parameter settings; (e) running synthesis jobs in parallel for the combinations of the parameter settings in a next iteration; and (f) repeating the steps (c)-(e) for one or more additional iterations or until an exit criteria has been met.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: George D. Gristede, Matthew M. Ziegler
  • Patent number: 9703920
    Abstract: A system and method of performing an intra-run decision during synthesis to determine a physical implementation of a system-on-chip (SoC) logic design are described. The method includes executing a stage of the synthesis with two or more scenarios, each scenario representing a unique combination of values of one or more parameters, and determining a quality measure associated with each of the two or more scenarios. The method also includes performing the intra-run decision by eliminating one or more of the two or more scenarios for execution in a subsequent stage of the synthesis based on the quality measure associated with each of the two or more scenarios.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher J. Berry, Lakshmi Reddy, Sourav Saha, Matthew M. Ziegler
  • Patent number: 9690900
    Abstract: A system and method of performing an intra-run decision during synthesis to determine a physical implementation of a system-on-chip (SoC) logic design are described. The method includes executing a stage of the synthesis with two or more scenarios, each scenario representing a unique combination of values of one or more parameters, and determining a quality measure associated with each of the two or more scenarios. The method also includes performing the intra-run decision by eliminating one or more of the two or more scenarios for execution in a subsequent stage of the synthesis based on the quality measure associated with each of the two or more scenarios.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher J. Berry, Lakshmi Reddy, Sourav Saha, Matthew M. Ziegler
  • Publication number: 20170177752
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 9660530
    Abstract: A booster for a digital circuit block provides speed and reliability at lower static power supply voltages, reducing overall power consumption of the circuits. The booster includes a transistor that couples a dynamic power supply node to a static power supply and is disabled in response to a boost clock. An inductor and capacitance, which may be the block power supply shunt capacitance, coupled to the dynamic power supply resonates so that the voltage of the dynamic power supply increases in magnitude to a value greater the static power supply voltage. A boost transistor is included in some embodiments to couple an edge of the clock to the dynamic power supply, increasing the voltage rise. Another aspect of the booster includes multiple boost transistors controlled by different boost clock phases so that the resonant boost circuit is successively stimulated to increase the amount of voltage rise.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rajiv V. Joshi, Matthew M. Ziegler
  • Publication number: 20170109456
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Application
    Filed: December 28, 2016
    Publication date: April 20, 2017
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 9619602
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 11, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Publication number: 20170083659
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Publication number: 20170083639
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 23, 2017
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Patent number: 9600623
    Abstract: A computer-implemented method obtains data describing a plurality of synthesis scenarios associated with a very-large-scale integration design (VLSI), wherein each synthesis scenario describes a different combination of tunable design parameters for a macro of the VLSI design, and wherein the VLSI design includes a plurality of macros being tuned. The plurality of macros is ranked based on the data. The ranking produces a macro waiting list that identifies those of the synthesis scenarios that are associated with each of the macros. A subset of the synthesis scenarios is pushed from the macro waiting list to a job submission queue that is separate from the macro waiting list. The job submission queue ranks the subset of synthesis scenarios in an order in which they are to be synthesized by a synthesis tuning system. At least one synthesis scenario is submitted to the synthesis tuning system according to the order.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Publication number: 20170076018
    Abstract: In one aspect, a method for tuning input parameters to a synthesis program is provided which includes the steps of: (a) selecting a subset of parameter settings for the synthesis program based on a tuning optimization cost function; (b) individually running synthesis jobs in parallel for each of the parameter settings in the subset; (c) analyzing results from a current iteration and prior iterations, if any, using the cost function; (d) using the results from the current iteration and the prior iterations, if any, to create combinations of the parameter settings; (e) running synthesis jobs in parallel for the combinations of the parameter settings in a next iteration; and (f) repeating the steps (c)-(e) for one or more additional iterations or until an exit criteria has been met.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Inventors: George D. Gristede, Matthew M. Ziegler
  • Patent number: 9582627
    Abstract: A method and system are provided for tuning parameters of a synthesis program for a design description. The method includes (a) ranking individual parameter impact by evaluating a design-cost function of each of the parameters. The method further includes (b) creating a set of possible parameter combinations that is ordered by an estimated-cost function. The method additionally includes (c) selecting, from the set of possible parameter combinations, top-k scenarios having best estimated costs to form a potential set, and running at least some of the top-k scenarios in parallel through the synthesis program. The method also includes (d) repeating steps (b)-(c) for one or more iterations until at least one of a maximum iteration limit is reached and an exit criterion is satisfied.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: February 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hung-Yi Liu, Matthew M. Ziegler
  • Publication number: 20170025948
    Abstract: A booster for a digital circuit block provides speed and reliability at lower static power supply voltages, reducing overall power consumption of the circuits. The booster includes a transistor that couples a dynamic power supply node to a static power supply and is disabled in response to a boost clock. An inductor and capacitance, which may be the block power supply shunt capacitance, coupled to the dynamic power supply resonates so that the voltage of the dynamic power supply increases in magnitude to a value greater the static power supply voltage. A boost transistor is included in some embodiments to couple an edge of the clock to the dynamic power supply, increasing the voltage rise. Another aspect of the booster includes multiple boost transistors controlled by different boost clock phases so that the resonant boost circuit is successively stimulated to increase the amount of voltage rise.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 26, 2017
    Inventors: Rajiv V. Joshi, Matthew M. Ziegler
  • Publication number: 20170025949
    Abstract: A booster for a digital circuit block provides speed and reliability at lower static power supply voltages, reducing overall power consumption of the circuits. The booster includes a transistor that couples a dynamic power supply node to a static power supply and is disabled in response to a boost clock. An inductor and capacitance, which may be the block power supply shunt capacitance, coupled to the dynamic power supply resonates so that the voltage of the dynamic power supply increases in magnitude to a value greater the static power supply voltage. A boost transistor is included in some embodiments to couple an edge of the clock to the dynamic power supply, increasing the voltage rise. Another aspect of the booster includes multiple boost transistors controlled by different boost clock phases so that the resonant boost circuit is successively stimulated to increase the amount of voltage rise.
    Type: Application
    Filed: August 18, 2015
    Publication date: January 26, 2017
    Inventors: Rajiv V. Joshi, Matthew M. Ziegler