Patents by Inventor MATTHEW NG

MATTHEW NG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11104570
    Abstract: Caging structures are disclosed for caging or otherwise reducing the mechanical shock pulse experienced by MEMS device beam structures during events that may cause mechanical shock to the MEMS device. The caging structures at least partially surround the beam such that they limit the motion of the beam in a direction perpendicular to the beam's longitudinal axis, thereby reducing stress on the beam during a mechanical shock event. The caging structures may be used in combination with mechanical shock-resistant beams.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: August 31, 2021
    Assignee: MEMS Drive (Nanjing) Co., Ltd.
    Inventors: Xiaolei Liu, Matthew Ng, Robert Calvet, Gerardo Morabito
  • Patent number: 11095820
    Abstract: A micro-electrical-mechanical system (MEMS) actuator configured to provide multi-axis movement, the micro-electrical-mechanical system (MEMS) actuator including: a first portion, a second portion, wherein the first portion and the second portion are displaceable with respect to each other, and a locking assembly configured to releasably couple the first portion and the second portion to attenuate displacement between the first portion and the second portion.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 17, 2021
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Matthew Ng, Guiqin Wang
  • Patent number: 11005392
    Abstract: An apparatus is provided. The apparatus includes a bidirectional comb drive actuator. The apparatus may also include a cantilever. The cantilever includes a first end connected to the bidirectional comb drive actuator and a second end connected to an inner frame. In addition, the cantilever may include first and second conductive layers for routing electrical signals. Embodiments of the disclosed apparatuses, which may include multi-dimensional actuators, allow for an increased number of electrical signals to be routed to the actuators. Moreover, the disclosed apparatuses allow for actuation multiple directions, which may provide for increased control, precision, and flexibility of movement. Accordingly, the disclosed embodiments provide significant benefits with regard to optical image stabilization and auto-focus capabilities, for example in size- and power-constrained environments.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 11, 2021
    Assignee: MEMS DRIVE (NANJING) CO., LTD
    Inventors: Xiaolei Liu, Roman Gutierrez, Matthew Ng, Guiqin Wang
  • Publication number: 20210088804
    Abstract: A multi-axis MEMS assembly is configured to provide multi-axis movement and includes: a first in-plane MEMS actuator configured to enable movement along at least an X-axis; and a second in-plane MEMS actuator configured to enable movement along at least a Y-axis; wherein the first in-plane MEMS actuator is coupled to the second in-plane MEMS actuator.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Inventors: MATTHEW NG, Xiaolei Liu, Guiqin Wang
  • Patent number: 10910959
    Abstract: An apparatus is provided. The apparatus includes a bidirectional comb drive actuator. The apparatus may also include a cantilever. The cantilever includes a first end connected to the bidirectional comb drive actuator and a second end connected to an inner frame. In addition, the cantilever may include first and second conductive layers for routing electrical signals. Embodiments of the disclosed apparatuses, which may include multi-dimensional actuators, allow for an increased number of electrical signals to be routed to the actuators. Moreover, the disclosed apparatuses allow for actuation multiple directions, which may provide for increased control, precision, and flexibility of movement. Accordingly, the disclosed embodiments provide significant benefits with regard to optical image stabilization and auto-focus capabilities, for example in size- and power-constrained environments.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: February 2, 2021
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Roman Gutierrez, Matthew Ng, Guiqin Wang
  • Patent number: 10875761
    Abstract: A micro-electrical-mechanical system (MEMS) device includes one or more slidable connection assemblies for releasably coupling the micro-electrical-mechanical system (MEMS) device to a wafer from which the micro-electrical-mechanical system (MEMS) device was made. The MEMS device may include a MEMS actuation core, and a MEMS electrical connector assembly electrically coupled to the MEMS actuation core configured to be electrically coupled to a printed circuit board.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 29, 2020
    Assignee: MEMS Drive, Inc.
    Inventors: Matthew Ng, Xiaolei Liu, Guiqin Wang
  • Patent number: 10815119
    Abstract: Shock-resistant MEMS structures are disclosed. In one implementation, a motion control flexure for a MEMS device includes: a rod including a first and second end, wherein the rod is tapered along its length such that it is widest at its center and thinnest at its ends; a first hinge directly coupled to the first end of the rod; and a second hinge directly coupled to the second of the rod. In another implementation, a conductive cantilever for a MEMS device includes: a curved center portion includes a first and second end, wherein the center portion has a point of inflection; a first root coupled to the first end of the center portion; and a second root coupled to the second end of the center portion. In yet another implementation, a shock stop for a MEMS device is described.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 27, 2020
    Assignee: MEMS Drive, Inc.
    Inventors: Gerardo Morabito, Xiaolei Liu, Guiqin Wang, Roman Gutierrez, Matthew Ng
  • Patent number: 10807857
    Abstract: A micro-electrical-mechanical system (MEMS) cantilever assembly includes an intermediary cantilever portion, a main cantilever arm configured to couple a moveable portion of a micro-electrical-mechanical system (MEMS) and the intermediary cantilever portion, and a plurality of intermediary links configured to couple the intermediary cantilever portion to a portion of the micro-electrical-mechanical system (MEMS).
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 20, 2020
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Matthew Ng, Guiqin Wang, Gerardo Morabito
  • Publication number: 20200144936
    Abstract: A package for moving a platform in six degrees of freedom, is provided. The platform may include an optoelectronic device mounted thereon. The package includes an in-plane actuator which may be a MEMS actuator and an out-of-plane actuator which may be formed of a piezoelectric element. The in-plane MEMS actuator may be mounted on the out-of-plane actuator mounted on a recess in a PCB. The in-plane MEMS actuator includes a plurality comb structures in which fingers of opposed combs overlap one another, i.e. extend past each other's ends. The out-of-plane actuator includes a central portion and a plurality of surrounding stages that are connected to the central portion. The in-plane MEMS actuator is coupled to the out-of-plane Z actuator to provide three degrees of freedom to the payload which may be an optoelectronic device included in the package.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 7, 2020
    Inventors: Xiaolei Liu, Guiqin Wang, Matthew Ng
  • Publication number: 20200136527
    Abstract: A method of manufacturing a micro-electrical-mechanical system (MEMS) assembly includes mounting a micro-electrical-mechanical system (MEMS) actuator to a metal plate. An image sensor assembly is mounted to the micro-electrical-mechanical system (MEMS) actuator. The image sensor assembly is electrically coupled to the micro-electrical-mechanical system (MEMS) actuator, thus forming a micro-electrical-mechanical system (MEMS) subassembly.
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Inventors: Matthew Ng, Xiaolei Liu, Guiqin Wang
  • Publication number: 20200099318
    Abstract: A multi-axis MEMS assembly includes: a micro-electrical-mechanical system (MEMS) actuator configured to provide linear three-axis movement, the micro-electrical-mechanical system (MEMS) actuator including: an in-plane MEMS actuator, and an out-of-plane MEMS actuator; and an optoelectronic device coupled to the micro-electrical-mechanical system (MEMS) actuator; wherein the in-plane MEMS actuator includes an electromagnetic actuator portion.
    Type: Application
    Filed: September 26, 2019
    Publication date: March 26, 2020
    Inventors: Guiqin Wang, Matthew Ng, Xiaolei Liu
  • Publication number: 20200084381
    Abstract: A micro-electrical-mechanical system (MEMS) actuator configured to provide multi-axis movement, the micro-electrical-mechanical system (MEMS) actuator including: a first portion, a second portion, wherein the first portion and the second portion are displaceable with respect to each other, and a locking assembly configured to releasably couple the first portion and the second portion to attenuate displacement between the first portion and the second portion.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 12, 2020
    Inventors: Xiaolei Liu, Matthew Ng, Guiqin Wang
  • Patent number: 10523135
    Abstract: A method of manufacturing a micro-electrical-mechanical system (MEMS) assembly includes mounting a micro-electrical-mechanical system (MEMS) actuator to a metal plate. An image sensor assembly is mounted to the micro-electrical-mechanical system (MEMS) actuator. The image sensor assembly is electrically coupled to the micro-electrical-mechanical system (MEMS) actuator, thus forming a micro-electrical-mechanical system (MEMS) subassembly.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: MEMS Drive, Inc.
    Inventors: Matthew Ng, Xiaolei Liu, Guiqin Wang
  • Patent number: 10516348
    Abstract: A package for moving a platform in six degrees of freedom, is provided. The platform may include an optoelectronic device mounted thereon. The package includes an in-plane actuator which may be a MEMS actuator and an out-of-plane actuator which may be formed of a piezoelectric element. The in-plane MEMS actuator may be mounted on the out-of-plane actuator mounted on a recess in a PCB. The in-plane MEMS actuator includes a plurality comb structures in which fingers of opposed combs overlap one another, i.e. extend past each other's ends. The out-of-plane actuator includes a central portion and a plurality of surrounding stages that are connected to the central portion. The in-plane MEMS actuator is coupled to the out-of-plane Z actuator to provide three degrees of freedom to the payload which may be an optoelectronic device included in the package.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: December 24, 2019
    Assignee: MEMS Drive Inc.
    Inventors: Xiaolei Liu, Guiqin Wang, Matthew Ng
  • Patent number: 10442680
    Abstract: Electric connection flexures for moving stages of microelectromechanical systems (MEMS) devices are disclosed. The disclosed flexures may provide an electrical and mechanical connection between a fixed frame and a moving frame, and are flexible in the moving frame's plane of motion. In implementations, the flexures are formed using a process that embeds the two ends of each flexure in the fixed frame and moving frame, respectively.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 15, 2019
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Kegang Huang, Guiqin Wang, Matthew Ng, Benson Mai, Changgeng Liu
  • Publication number: 20190308871
    Abstract: Caging structures are disclosed for caging or otherwise reducing the mechanical shock pulse experienced by MEMS device beam structures during events that may cause mechanical shock to the MEMS device. The caging structures at least partially surround the beam such that they limit the motion of the beam in a direction perpendicular to the beam's longitudinal axis, thereby reducing stress on the beam during a mechanical shock event. The caging structures may be used in combination with mechanical shock-resistant beams.
    Type: Application
    Filed: April 16, 2019
    Publication date: October 10, 2019
    Inventors: Xiaolei Liu, Matthew Ng, Robert Calvet, Gerardo Morabito
  • Publication number: 20190227266
    Abstract: A multi-axis MEMS assembly includes a micro-electrical-mechanical system (MEMS) actuator configured to provide linear three-axis movement. The micro-electrical-mechanical system (MEMS) actuator includes: an in-plane MEMS actuator, and an out-of-plane MEMS actuator. An optoelectronic device is coupled to the micro-electrical-mechanical system (MEMS) actuator. The out-of-plane MEMS actuator includes a multi-morph piezoelectric actuator.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 25, 2019
    Inventors: GUIQIN WANG, Xiaolei Liu, Matthew Ng
  • Patent number: 10322925
    Abstract: Caging structures are disclosed for caging or otherwise reducing the mechanical shock pulse experienced by MEMS device beam structures during events that may cause mechanical shock to the MEMS device. The caging structures at least partially surround the beam such that they limit the motion of the beam in a direction perpendicular to the beam's longitudinal axis, thereby reducing stress on the beam during a mechanical shock event. The caging structures may be used in combination with mechanical shock-resistant beams.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: June 18, 2019
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Matthew Ng, Robert Calvet, Gerardo Morabito
  • Publication number: 20190157988
    Abstract: An apparatus is provided. The apparatus includes a bidirectional comb drive actuator. The apparatus may also include a cantilever. The cantilever includes a first end connected to the bidirectional comb drive actuator and a second end connected to an inner frame. In addition, the cantilever may include first and second conductive layers for routing electrical signals. Embodiments of the disclosed apparatuses, which may include multi-dimensional actuators, allow for an increased number of electrical signals to be routed to the actuators. Moreover, the disclosed apparatuses allow for actuation multiple directions, which may provide for increased control, precision, and flexibility of movement. Accordingly, the disclosed embodiments provide significant benefits with regard to optical image stabilization and auto-focus capabilities, for example in size- and power-constrained environments.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Xiaolei Liu, Roman Gutierrez, Matthew Ng, Guiqin Wang
  • Publication number: 20190152764
    Abstract: Shock-resistant MEMS structures are disclosed. In one implementation, a motion control flexure for a MEMS device includes: a rod including a first and second end, wherein the rod is tapered along its length such that it is widest at its center and thinnest at its ends; a first hinge directly coupled to the first end of the rod; and a second hinge directly coupled to the second of the rod. In another implementation, a conductive cantilever for a MEMS device includes: a curved center portion includes a first and second end, wherein the center portion has a point of inflection; a first root coupled to the first end of the center portion; and a second root coupled to the second end of the center portion. In yet another implementation, a shock stop for a MEMS device is described.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Gerardo Morabito, Xiaolei Liu, Guiqin Wang, Roman Gutierrez, Matthew Ng