Patents by Inventor Matthew S. Stay

Matthew S. Stay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240206076
    Abstract: Methods of making metal patterns on flexible substrates are provided. A releasable solid layer is selectively formed on a patterned surface of the flexible substrate by applying a liquid solution thereon. The releasable solid layer is transferred from the patterned surface to a transfer layer where the metal patterns are formed.
    Type: Application
    Filed: February 29, 2024
    Publication date: June 20, 2024
    Inventors: Henrik B. van Lengerich, Matthew S. Stay, Caleb T. Nelson, David J. Tarnowski, David J. Rowe, Edwin L. Kusilek
  • Patent number: 11971560
    Abstract: Optical films are described. In particular, optical films including a broadband polymeric multilayer optical reflector and a discontinuous transparent coating disposed on the broadband multilayer optical reflector, where the discontinuous transparent coating includes an array of dots are described. Such films may provide reduced coefficients of friction while still having high specular reflectivity.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: April 30, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jeremy O. Swanson, Matthew S. Stay, Matthew R. D. Smith
  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11950372
    Abstract: Methods of making metal patterns on flexible substrates are provided. Releasable solid layer is selectively formed on a patterned surface of the flexible substrate by applying a liquid solution thereon. Metal patterns on the flexible substrate can be formed by removing the releasable solid layer after metallization. In some cases, the releasable solid layer can be transferred from the patterned surface to a transfer layer where the metal patterns are formed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 2, 2024
    Assignee: 3M INNOVATION PROPERTIES
    Inventors: Henrik B. van Lengerich, Matthew S. Stay, Caleb T. Nelson, David J. Tarnowski, David J. Rowe, Edwin L. Kusilek
  • Publication number: 20240094443
    Abstract: An optical system is disclosed and includes an optical sensor configured to receive light and form an image. The optical system further includes a microlens film including a structured first major surface opposite a second major surface, the structured first major surface includes a regular array of spaced apart microlenses arranged across a width and a length of the microlens film and each microlens has an effective imaging area and configured to form an image onto the optical sensor. A light absorbing layer is disposed on the array of spaced apart microlenses and reduces the effective imaging area of each microlens by at least 10%. A display panel, the optical sensor, the microlens film and the display plane are substantially co-extensive with each other along the width and length of the microlens film.
    Type: Application
    Filed: October 15, 2020
    Publication date: March 21, 2024
    Inventors: Zhaohui Yang, Matthew S. Stay, Matthew R.D. Smith, Tri D. Pham, Adam T. Ringberg, Serena L. Schleusner
  • Publication number: 20240034088
    Abstract: Methods and apparatuses for screen or stencil printing a pattern on a substrate are provided. The substrate (2) has its major surface in contact with a first major surface (112) of a stencil shell (111) having apertures (116). A coating material is disposed onto the second major surface (114) of the stencil shell (111) to flow through the apertures (116) to contact the substrate (2), where the coating material is at least partially cured. The substrate (2) is separated (C) from the first major surface (112) of the stencil shell (111) after the curing (142) and a pattern (42) of the at-least-partially-cured coating material is formed on the substrate (2).
    Type: Application
    Filed: December 21, 2021
    Publication date: February 1, 2024
    Inventors: Ann M. Gilman, Kevin T. Reddy, Shawn C. Dodds, Matthew R.D. Smith, Clinton J. Cook, Mikhail L. Pekurovsky, Matthew S. Stay
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11820125
    Abstract: A printing system (200) including a printing roll (220) is provided. The printing roll (220) includes an elastically deformable and compressible inner layer (224) and a thin outer shell (222) to cover the inner layer (224). The thin outer shell (222) includes a pattern of raised print features (223) to receive ink material thereon. The inner layer (224) is softer and thicker than the thin outer shell (222), and optionally, the thin outer shell (222) is removable from the inner layer (224). The inner layer (224) of the printing roll (220) has a thickness, a compression force deflection value and an elastically-deformable compressibility such that the raised print features (223) of the printing roll (220) do not slide or deform with respect to the printed web (2) in an amount to generate a substantially visible dot gain.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Kara A. Meyers, Shawn C. Dodds, Mikhail L. Pekurovsky, Tyler J. Rattray, James N. Dobbs, Samad Javid, Matthew S. Stay
  • Publication number: 20230341615
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 26, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11744915
    Abstract: Diagnostic devices for quantitative or qualitative analysis of a sample fluid including an analyte include at least two portions made from a hydrophilic material. The planar portions are stacked on each other and each occupy a different and substantially parallel plane to form a three-dimensional structure. At least one of the planar portions includes a hydrophobic region formed by applying a low surface energy material that extends through a thickness of the substrate portion from a first major surface to a second major surface thereof. The hydrophilic regions in the overlying substantially parallel substrate portions can be aligned with each other such that a fluid is passively transported between adjacent hydrophilic regions to provide a sample flow path between adjacent substrate portions.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: September 5, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mikhail L. Pekurovsky, Matthew S. Stay, Hannah J. Loughlin, Kevin T. Reddy, Henrik B. Van Lengerich, Ann M. Gilman, Matthew R.D. Smith
  • Publication number: 20230214062
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 mn?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: May 4, 2021
    Publication date: July 6, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11677130
    Abstract: A waveguide for receiving an incident electromagnetic wave (EMW) having an operating frequency ? includes an array of spaced apart unit cells arranged along the waveguide. The unit cells are configured to resonantly couple to the incident EMW and radiate an EMW at the operating frequency propagating inside and along the waveguide. Each unit cell is configured to couple to the incident EMW with a first coupling efficiency and includes a dielectric body configured to couple to the incident EMW with a second coupling efficiency and one or more metal layers disposed on and partially covering the dielectric body. The second coupling efficiency is substantially smaller than the first coupling efficiency. A communication system includes the waveguide and a transceiver configured to emit an EMW having the operating frequency ?.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: June 13, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jaewon Kim, Dipankar Ghosh, Craig W. Lindsay, Matthew S. Stay
  • Publication number: 20230138304
    Abstract: A diagnostic device includes a sensor stack with multiple panels of a porous material disposed in planes parallel to one another and in face-to-face contact with each other. At least a portion of the panels of the porous material include hydrophobic regions and hydrophilic regions configured to provide a sample flow path for migration of a fluid sample through the sensor stack from one panel to another in the hydrophilic regions. A wicking layer is on a major surface of the sensor stack.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 4, 2023
    Inventors: Mikhail L. Pekurovsky, Matthew S. Stay, Henrik B. van Lengerich, Ann M. Gilman, Sonnie L. Hubbard, Hannah J. Loughlin, Satinder K. Nayar, Kevin T. Reddy, Timothy J. Rowell, Matthew R.D. Smith, Ronald P. Swanson, Daniel J. Theis, Deniz Yuksel Yurt
  • Publication number: 20230120911
    Abstract: Diagnostic devices for quantitative or qualitative analysis of a sample fluid including an analyte include at least two portions made from a hydrophilic material. The planar portions are stacked on each other and each occupy a different and substantially parallel plane to form a three-dimensional structure. At least one of the planar portions includes a hydrophobic region formed by applying a low surface energy material that extends through a thickness of the substrate portion from a first major surface to a second major surface thereof. The hydrophilic regions in the overlying substantially parallel substrate portions can be aligned with each other such that a fluid is passively transported between adjacent hydrophilic regions to provide a sample flow path between adjacent substrate portions.
    Type: Application
    Filed: March 16, 2021
    Publication date: April 20, 2023
    Inventors: Mikhail L. Pekurovsky, Matthew S. Stay, Hannah J. Loughlin, Kevin T. Reddy, Henrik B. van Lengerich, Ann M. Gilman, Matthew R.D. Smith
  • Publication number: 20230049504
    Abstract: A transfer article includes an acrylate layer releasable from a release layer including a metal layer, a metal oxide layer, or a doped semiconductor layer at a release value of from 2 to 50 grams/inch (0.8 to 20 g/cm). A functional layer overlies the acrylate layer, wherein the functional layer includes at least one layer of a functional material selected to provide at least one of a therapeutic, aesthetic or cosmetic benefit on a dental appliance in a mouth of a patient, and wherein the transfer article has a thickness of less than 3 micrometers. A pattern of a transfer material is on a major surface of the functional layer, wherein the transfer material includes an adhesion modifying material chosen from release materials and adhesives.
    Type: Application
    Filed: December 29, 2020
    Publication date: February 16, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin W. Gotrik, Kevin T. Reddy, Scott J. Jones, Matthew S. Stay, Matthew R.D. Smith, Yizhong Wang, Mikhail L. Pekurovsky, Narina Y. Stepanova
  • Patent number: 11572492
    Abstract: Modified adhesive layers are prepared by contacting an adhesive layer to a modified microstructured release liner. The modified release liner has a release layer surface with a set of microstructured depressions and a discontinuous pattern of ink material located on the surface of the release layer. A portion of the discontinuous pattern of ink material overlaps with and is located within some of the depressions. The ink material comprises a non-adhesive but adhesively transferrable material, or an adhesive material. Upon removal of the adhesive from the release liner, the ink material transfers to the adhesive surface.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: February 7, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kui Chen-Ho, Patrick J. Yeshe, Matthew S. Stay, Matthew R. D. Smith, Anish Kurian, Ross E. Behling
  • Publication number: 20230031047
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the embedded reflective layers are localized reflective layers.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 2, 2023
    Inventors: Kui Chen-Ho, Ann M. Gilman, Kevin W. Gotrik, Scott J. Jones, Daniel M. Lentz, Michael A. McCoy, Shri Niwas, Matthew S. Stay, Ramasubramani Kuduva Raman Thanumoorthy, Ying Xia
  • Publication number: 20230013219
    Abstract: A method for making a dental appliance configured to position at least one tooth of a patient includes printing a hardenable liquid resin composition on a major surface of a polymeric material to form a pattern of discrete unhardened liquid regions thereon; at least partially hardening the unhardened liquid regions to form a corresponding array of structures on the major surface of the polymeric material, wherein the structures have a characteristic cross-sectional dimension of about 25 microns to about 1 mm, and a feature spacing of about 100 microns to about 2000 microns; and forming a plurality of cavities in the polymeric material to form the dental appliance including an arrangement of cavities configured to receive one or more teeth.
    Type: Application
    Filed: December 29, 2020
    Publication date: January 19, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin T. Reddy, Matthew S. Stay, Matthew R.D. Smith, Kevin W. Gotrik, Mikhail L. Pekurovsky, Scott J. Jones, Ta-Hua Yu, Thomas J. Metzler
  • Publication number: 20230000596
    Abstract: A method for making a dental appliance configured to position at least one tooth of a patient includes printing a hardenable liquid resin composition on a major surface of a polymeric material to form a pattern thereon, wherein the hardenable liquid resin composition includes a glass ionomer, a resin modified glass ionomer, and mixtures and combinations thereof. A dental appliance is formed from the polymeric material that includes an arrangement of cavities configured to receive one or more teeth.
    Type: Application
    Filed: December 23, 2020
    Publication date: January 5, 2023
    Inventors: Bhaskar V. Velamakanni, Paul R. Klaiber, Richard P. Rusin, Yizhong Wang, Kevin T. Reddy, Matthew S. Stay, Matthew R.D. Smith, Jennifer J. Post
  • Patent number: 11493674
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the embedded reflective layers are localized reflective layers.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Kui Chen-Ho, Ann M. Gilman, Kevin W. Gotrik, Scott J. Jones, Daniel M. Lentz, Michael A. McCoy, Shri Niwas, Matthew S. Stay, Ramasubramani Kuduva Raman Thanumoorthy, Ying Xia