Patents by Inventor Matthew S. Stay

Matthew S. Stay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140071653
    Abstract: This application describes a back-lit transmissive display including a transmissive display (620) and a variable index light extraction layer (640) optically coupled to a lightguide (630). The variable index light extraction layer has first regions (140) of nanovoided polymeric material and second regions (130) of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Application
    Filed: May 9, 2012
    Publication date: March 13, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Patent number: 8652345
    Abstract: A method of forming a patterned substrate is provided. The method includes providing a substrate (300) having a structured surface region comprising one or more recessed features (310). The method includes disposing a first liquid (325) onto at least a portion of the structured surface region. The method includes contacting the first liquid with a second liquid (330). The method includes displacing the first liquid with the second liquid from at least a portion (315) of the structured surface region. The first liquid is selectively located in at least a portion of the one or more recessed features.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 18, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Cristin E. Moran, Matthew H. Frey, Matthew S. Stay, Mikhail L. Pekurovsky
  • Publication number: 20140043856
    Abstract: Extended area lighting devices, which are useful e.g. as luminaires, include a light guide and diffractive surface features on a major surface of the light guide. The diffractive surface features are tailored to extract guided-mode light from the light guide. The light guides can be combined with other components and features such as light source(s) to inject guided-mode light into the light guide, light source(s) to project light through the light guide as non-guided-mode light, a framework of interconnected support members (attached to multiple such light guides), and/or a patterned low index subsurface layer that selectively blocks some guided mode light from reaching the diffractive surface features, to provide unique and useful lighting devices. Related optical devices, and optical films having diffractive features that can be used to construct such devices and light guides, are also disclosed.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Inventors: David S. Thompson, Zhaohui Yang, Matthew S. Stay
  • Publication number: 20140043850
    Abstract: Extended area lighting devices include a light guide and diffractive surface features on a major surface of the light guide, at least some diffractive surface features adapted to couple guided-mode light out of the light guide. The diffractive features include first and second diffractive features disposed on respective first and second portions of the major surface. A patterned light transmissive layer, including a second light transmissive medium, optically contacts the second diffractive features but not the first diffractive features. A first light transmissive medium optically contacts the first but not the second diffractive features. The first and second portions may define indicia, and the first and second diffractive features provide low distortion for viewing objects through the light guide such that the indicia is not readily apparent to users when guided-mode light does not propagate within the light guide. Optical films having such diffractive features are also disclosed.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Inventors: David S. Thompson, Zhaohui Yang, Matthew S. Stay, Vivian W. Jones
  • Patent number: 8605406
    Abstract: Methods of altering charge on a dielectric material involve application of an at least weakly conductive liquid to at least a portion of the dielectric material. The liquid is then at least partially removed from the dielectric material leaving a substantially uniform electrostatic charge on at least the portion of the dielectric material. Some methods provide a dielectric material that is both net neutral and completely neutral. Other methods generate a charge pattern that is used for subsequent processing.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: December 10, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Richard M. Jendrejack, Robert A. Yapel, Mitchelle A. F. Johnson, Mikhail L. Pekurovsky, Peter T. Benson, Joan M. Noyola, William B. Kolb, Matthew S. Stay
  • Publication number: 20130068723
    Abstract: A method of producing substrates having a patterned mask layer with fine features such as repeating stripes. The method including the steps of forming a substrate having a transfer layer with a predetermined pattern on a first major surface of the substrate; providing the substrate having the transfer layer on the first major surface; providing a structured tool having a body and a plurality of contact portions, the contact portions having a Young's Modulus between about 0.5 Gpa to about 30 Gpa; heating either the structured tool or the substrate; contacting the transfer layer with the structured tool; cooling the transfer layer; and withdrawing the structured tool from the transfer layer such that portions of the transfer layer separate with the structured tool leaving openings in the transfer layer that extend all the way through the transfer layer to the substrate forming the transfer layer with the predetermined pattern.
    Type: Application
    Filed: December 20, 2010
    Publication date: March 21, 2013
    Inventors: Matthew S. Stay, Mikhail L. Pekurovsky
  • Publication number: 20130011608
    Abstract: A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
    Type: Application
    Filed: January 13, 2011
    Publication date: January 10, 2013
    Inventors: Martin B. Wolk, William Blake Kolb, Encai Hao, Michael Benton Free, Audrey A. Sherman, John A. Wheatley, David S. Thompson, Matthew S. Stay
  • Publication number: 20110192977
    Abstract: Methods of altering charge on a dielectric material involve application of an at least weakly conductive liquid to at least a portion of the dielectric material. The liquid is then at least partially removed from the dielectric material leaving a substantially uniform electrostatic charge on at least the portion of the dielectric material. Some methods provide a dielectric material that is both net neutral and completely neutral. Other methods generate a charge pattern that is used for subsequent processing.
    Type: Application
    Filed: December 16, 2008
    Publication date: August 11, 2011
    Inventors: Richard M. Jendrejack, Robert A. Yapel, Mitchelle A.F. Johnson, Mikhail L. Pekurovsky, Peter T. Benson, Joan M. Noyola, William B. Kolb, Matthew S. Stay
  • Publication number: 20110111182
    Abstract: The present disclosure describes an article and a method of forming a microstructure. The method includes providing a substrate having a structured surface region comprising one or more recessed features with recessed surfaces. The structured surface region is substantially free of plateaus. The method includes disposing a fluid composition comprising a functional material and a liquid onto the structured surface region. The method includes evaporating liquid from the fluid composition. The functional material collects on the recessed surfaces such that a remainder of the structured surface region is substantially free of the functional material.
    Type: Application
    Filed: June 25, 2009
    Publication date: May 12, 2011
    Inventors: Matthew S. Stay, Mikhail L. Pekurovsky, Cristin E. Moran, Matthew H. Frey
  • Publication number: 20110100957
    Abstract: A method of forming a petterned substracte is provided. The method includes providing a substrate (300) having a structured surface region comprising one or more recessed features (310). The method includes disposing a first liquid (325) onto at least a portion of the structured surface region. The method includes contacting the first liquid with a second liquid (330). The method includes 300 displacing the first liquid with the second liquid from at least a portion (315) of the structured surface region. The first liquid is selectively located in at least a portion of the one or more recessed features.
    Type: Application
    Filed: May 26, 2009
    Publication date: May 5, 2011
    Inventors: Cristin E. Moran, Matthew H. Frey, Matthew S. Stay, Mikhail L. Pekurovsky
  • Patent number: 7927454
    Abstract: A method of forming a metallic material on a receptor that includes the steps of: placing a donor element proximate a receptor, wherein the donor element includes a donor substrate and a thermal transfer layer, wherein the thermal transfer layer includes a catalytic material, and wherein the thermal transfer layer of the donor element is placed proximate the surface of the receptor; thermally transferring at least a portion of the thermal transfer layer from the donor element to the receptor; and electrolessly depositing a metallic material on the receptor by growth of the metallic material on the catalytic material.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: April 19, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Khanh T. Huynh, Thomas A. Isberg, Matthew S. Stay, William A. Tolbert, Martin B. Wolk, Joseph W. Woody, Robin E. Wright, Haiyan Zhang
  • Publication number: 20100270058
    Abstract: The present disclosure describes methods for making an electronic device. Methods for making electronic devices include providing a first electrode, an electro-responsive layer, and a second electrode. A first conductive nanostructured grid is deposited on a surface of the first electrode. The electro-responsive layer is facing the first conductive nanostructured grid. The electro-responsive layer is positioned between the first electrode and the second electrode. An electronic device having a first nanostructured grid deposited on a first electrode is described.
    Type: Application
    Filed: December 8, 2008
    Publication date: October 28, 2010
    Inventors: Wayne S. Mahoney, Manoj Nirmal, Jane K. Wardhana, Matthew S. Stay
  • Patent number: 7718219
    Abstract: A method for forming channels within a dried chromonic layer is described. A coating composition is applied to a substrate, dried, and exposed to a hydrophilic organic solvent forming a channel pattern having a first set of channels, and a second set of channels that are substantially perpendicular to the first set of channels. A deposition material may be disposed within the channels to form a nanostructured pattern. An article having a channel pattern is further described.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: May 18, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Wayne S. Mahoney, Wendy L. Thompson, Donald J. McClure, Matthew S. Stay, Hassan Sahouani
  • Publication number: 20090023587
    Abstract: A method of forming a metallic material on a receptor that includes the steps of: placing a donor element proximate a receptor, wherein the donor element includes a donor substrate and a thermal transfer layer, wherein the thermal transfer layer includes a catalytic material, and wherein the thermal transfer layer of the donor element is placed proximate the surface of the receptor; thermally transferring at least a portion of the thermal transfer layer from the donor element to the receptor; and electrolessly depositing a metallic material on the receptor by growth of the metallic material on the catalytic material.
    Type: Application
    Filed: July 17, 2007
    Publication date: January 22, 2009
    Inventors: Khanh T. Huynh, Thomas A. Isberg, Matthew S. Stay, William A. Tolbert, Martin B. Wolk, Joseph W. Woody, Robin E. Wright, Haiyan Zhang
  • Publication number: 20090004436
    Abstract: A method for forming channels within a dried chromonic layer is described. A coating composition is applied to a substrate, dried, and exposed to a hydrophilic organic solvent forming a channel pattern having a first set of channels, and a second set of channels that are substantially perpendicular to the first set of channels. A deposition material may be disposed within the channels to form a nanostructured pattern. An article having a channel pattern is further described.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Inventors: Wayne S. Mahoney, Wendy L. Thompson, Donald J. McClure, Matthew S. Stay
  • Publication number: 20080108727
    Abstract: A pre-polymer/liquid crystal composition is disclosed and includes, a liquid crystal component, a photo polymerization initiator, and a polymer precursor component. The polymer precursor component includes at least, a silane monomer, reactive (meth)acryloxy monomer or oligomer, and an ester, urethane, or (meth)acrylate based polymer or oligomer, bearing one or more reactive (meth)acrylate groups. Methods of forming a bistable electro-optical device are also disclosed.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 8, 2008
    Inventors: Ralph R. Roberts, Amy J. Hite, Jane K. Wardhana, Matthew S. Stay, Kevin M. Lewandowski