Patents by Inventor Matthew T. Pretz

Matthew T. Pretz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100510
    Abstract: According to one or more embodiments of the present disclosure, a fluidization promoter useful for dehydrogenation includes from 0.1 wt. % to 10 wt. % gallium, from 5 ppm to 500 ppm platinum, less than 5 wt. % alkali metal or alkaline earth metal, and a support material. A median particle size of the fluidization promoter is from 20 ?m to 50 ?m. Catalyst systems useful for dehydrogenation and methods for producing olefins using the same are also disclosed.
    Type: Application
    Filed: December 15, 2021
    Publication date: March 28, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Lin Luo, Yang Yang, Matthew T. Pretz
  • Publication number: 20240100496
    Abstract: According to one or more embodiments of the present disclosure, a riser may be operated by a method including repeatedly heating and cooling a riser between an operational temperature and a non-operational temperature. When the riser is heated from a non-operational temperature to an operational temperature, the riser undergoes thermal expansion. When the riser is cooled from an operational temperature to a non-operational temperature, the riser undergoes thermal contraction. The riser undergoes irreversible growth over repeated heating and cooling cycles, and the length of a lower section of an upper riser portion is sized to accommodate the irreversible growth from cycled thermal expansion of the riser.
    Type: Application
    Filed: December 14, 2021
    Publication date: March 28, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Edwards Walter, Fermin Alejandro Sandoval, Albert Meza
  • Publication number: 20240034700
    Abstract: According to one or more embodiments, olefins may be produced by contacting a hydrocarbon feed stream with a particulate solid in a reaction vessel. The reaction vessel may be connected to a riser. The riser may extend through a riser port of an outer shell of a particulate solid separation section such that the riser may comprise an interior riser segment and an exterior riser segment. The particulate solid separation section may include a gas outlet port, a riser port, and a particulate solid outlet port. The particulate solid separation section may house a gas/solids separation device and a solid particulate collection area. The riser port may be positioned on a sidewall of the outer shell such that it is not located on a central vertical axis of the particulate solid separation section. The particulate solid may be separated from an olefin-containing product stream in the gas/solids separation device.
    Type: Application
    Filed: December 14, 2021
    Publication date: February 1, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Edwards Walter, Fermin Alejandro Sandoval
  • Publication number: 20240033723
    Abstract: According to one or more embodiments, particulate solids may be regenerated in a particulate solid treatment vessel. The particulate solid treatment vessel may be connected to a riser. The riser may extend through a riser port of an outer shell of a particulate solid separation section such that the riser may comprise an interior riser segment and an exterior riser segment. The particulate solid separation section may include a gas outlet port, a riser port, and a particulate solid collection area. The riser port may be positioned on a sidewall of the outer shell such that it is not located on a central vertical axis of the particulate solid separation section. The particulate solids may be separated from gasses in the particulate solid separation section.
    Type: Application
    Filed: December 14, 2021
    Publication date: February 1, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Edwards Walter, Fermin Alejandro Sandoval
  • Publication number: 20240024836
    Abstract: A supported riser apparatus may be housed at least partially within a vessel. The supported riser apparatus may include a riser including a non-vertical riser segment, a non-linear riser segment, and a vertical riser segment. The supported riser apparatus may further include a support member comprising a proximal end and a distal end. The proximal end of the support member may be connected to the non-vertical riser segment and the angle between the support member and the non-vertical riser segment may be from 15 to 75. The supported riser apparatus may include a support structure connected to the riser and the support member and an expansion guide connected to an interior surface of the vessel. The expansion guide may be shaped and positioned such that the support member slides across the expansion guide as the support member undergoes thermal expansion or thermal contraction.
    Type: Application
    Filed: December 14, 2021
    Publication date: January 25, 2024
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Fermin Alejandro Sandoval, Richard Edwards Walter, Albert Meza
  • Publication number: 20240024837
    Abstract: According to one or more embodiments of the present disclosure, a riser may include a lower riser portion, where the lower riser portion terminates at an upper end of the vertical riser segment, and an upper riser portion including a lower end, where the lower end of the upper riser portion may be positioned around the upper end of the vertical riser segment of the lower riser portion. The riser may also include a first guide and a second guide each positioned on opposite sides of the interior of the lower end of the upper riser portion. The vertical riser segment of the lower riser portion may be guided in a direction substantially parallel with the outer surface of the first guide and the outer surface of the second guide when the lower riser portion expands or contracts due to changes in temperature.
    Type: Application
    Filed: December 14, 2021
    Publication date: January 25, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Edwards Walter, Fermin Alejandro Sandoval
  • Publication number: 20230372889
    Abstract: A fluidized bed processing system include a vessel having a vessel wall and a plurality of chemical feed distributors coupled to the vessel wall and extending into an internal volume of the vessel. Each of the chemical feed distributors includes a distributor body forming a chemical feed flow path and a plurality of chemical feed outlets. The fluidized bed processing system further includes at least one intermediate beam having at plurality of slots spaced apart along a beam length. That intermediate beam is coupled to the vessel wall at both ends, each chemical feed distributor passes through one slot of the intermediate beam, and the intermediate beam provides vertical support for each of the plurality of chemical feed distributors. The fluidized bed processing system can include lateral guides. The intermediate beams and lateral guides support the chemical feed distributors vertically and laterally.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 23, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Donald F. Shaw, Richard Walter, Albert Meza, Fermin Sandoval, Quan Yuan, Liwei Li, Pritish Kamat
  • Publication number: 20230364575
    Abstract: According to one or more embodiments, a chemical feed distributor may include a chemical feed inlet, a body, a plurality of primary chemical feed outlets, and a secondary chemical feed outlet. The chemical feed inlet may pass a chemical feed stream into the chemical feed distributor. One or more walls of the body may define an elongated chemical feed stream flow path. The plurality of primary chemical feed outlets may be spaced along at least a portion of the length of the elongated chemical feed stream flow path and may be operable to pass a first portion of the chemical feed stream out of the feed distributor and into a vessel. The secondary chemical feed outlet may be downstream of the plurality of primary chemical feed outlets and may be operable to pass a second portion of the chemical feed stream out of the chemical feed distributor.
    Type: Application
    Filed: September 30, 2021
    Publication date: November 16, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Quan Yuan, Pritish M. Kamat, Liwei Li, Lin Luo
  • Publication number: 20230364570
    Abstract: According to one or more embodiments, a chemical feed distributor may include a chemical feed inlet and a body. The chemical feed inlet may pass a chemical feed stream into the chemical feed distributor. The body may comprise one or more walls that may define an elongated chemical feed stream flow path and a plurality of chemical feed outlets. The plurality of chemical feed outlets may be spaced on the walls. The plurality of chemical feed outlets may be operable to pass the chemical feed stream out of the chemical feed distributor. The elongated chemical feed stream flow path may comprise an upstream fluid flow path portion and a downstream fluid flow path portion. The walls may be positioned such that the average cross-sectional area of the upstream fluid flow path portion is greater than the average cross-sectional area of the downstream fluid flow path portion.
    Type: Application
    Filed: September 30, 2021
    Publication date: November 16, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Quan Yuan, Pritish M. Kamat, Liwei Li, Lin Luo
  • Patent number: 11773038
    Abstract: A method for operating an acetylene hydrogenation unit in an integrated steam cracking-fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from a steam cracking system and an FCDh effluent from an FCDh system into a hydrogenation feed and an acetylene-depleted stream, the hydrogenation feed comprising at least hydrogen, CO, and acetylene. During normal operating conditions, at least 20% of the CO in the hydrogenation feed is from the cracked gas. The method may include contacting the hydrogenation feed with an acetylene hydrogenation catalyst to hydrogenate at least a portion of the acetylene in the hydrogenation feed to produce a hydrogenated effluent. The steam cracking is operated under conditions that increase CO production such that a concentration of CO in the cracked gas is great enough that when a flowrate of the FCDh effluent is zero, a CO concentration in the hydrogenation feed is at least 100 ppmv.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: October 3, 2023
    Assignee: Dow Global Technoogies LLC
    Inventors: Lin Luo, Hangyao Wang, Yu Liu, Matthew T. Pretz, Andrzej Malek
  • Patent number: 11731924
    Abstract: A method for operating an acetylene hydrogenation unit of a steam cracking system that integrates a fluidized catalytic dehydrogenation (FCDh) effluent from a fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from the steam cracking system into at least a hydrogenation feed comprising at least acetylene, CO, and hydrogen, introducing the FCDh effluent to the separation system, combining the FCDh effluent with the cracked gas upstream of the separation system, or both. The method may include hydrogenating acetylene in the hydrogenation feed. Elevated CO concentration in the hydrogenation feed due to the FCDh effluent may reduce a reaction rate of acetylene hydrogenation. The acetylene hydrogenation unit may operate at an elevated temperature relative to normal operating temperatures when the portion of the FCDh effluent is not integrated, such that a concentration of acetylene in the hydrogenated effluent is less than a threshold acetylene concentration.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: August 22, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Hangyao Wang, Lin Luo, Yu Liu, Matthew T. Pretz, Andrzej Malek
  • Publication number: 20230257327
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 17, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 11724974
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: August 15, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 11643377
    Abstract: A method for processing a chemical stream includes contacting a feed stream with a catalyst in a reactor portion of a reactor system that includes a reactor portion and a catalyst processing portion. The catalyst includes platinum, gallium, or both and contacting the feed stream with the catalyst causes a reaction which forms an effluent stream. The method includes separating the effluent stream from the catalyst, passing the catalyst to the catalyst processing portion, and processing the catalyst in the catalyst processing portion. Processing the catalyst includes passing the catalyst to a combustor, combusting a supplemental fuel in the combustor to heat the catalyst, treating the heated catalyst with an oxygen-containing gas to produce a reactivated catalyst, and passing the reactivated catalyst from the catalyst processing portion to the reactor portion. The supplemental fuel may include a molar ratio of hydrogen to other combustible fuels of at least 1:1.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: May 9, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Mark W. Stewart, Lin Luo, Hangyao Wang
  • Patent number: 11613506
    Abstract: According to one or more embodiments presently disclosed, a method for processing a chemical stream may include contacting a feed stream with a catalyst in a reactor portion of a reactor system that includes a reactor portion and a catalyst processing portion. Contacting the feed stream with the catalyst may cause a reaction forming an effluent. The method may include separating the effluent stream from the catalyst, passing the catalyst to the catalyst processing portion, and processing the catalyst in the catalyst processing portion. Processing the catalyst may include passing the catalyst to a combustor, combusting a supplemental fuel stream in the combustor to heat the catalyst, and treating the heated catalyst with an oxygen-containing gas. The supplemental fuel stream may include at least 1 mol % of one or more hydrocarbons, and a weight ratio of catalyst to hydrocarbons in the combustor may be at least 300:1.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 28, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Hangyao Wang, Lin Luo
  • Publication number: 20230089190
    Abstract: A process for oxidative dehydrogenation of a hydrocarbon to produce an olefin and water may include contacting, in a fluidized bed, the hydrocarbon with a particulate material, which may include at least one oxygen transfer agent (OTA) and at least one fluidization enhancing additive. During at least a portion of contacting the hydrocarbon with the particulate material, the fluidized bed may be at a temperature at or above a melting point of one or more materials of the oxygen transfer agent. Further, during at least a portion of contacting the hydrocarbon with the particulate material, a surface of at least a portion of the OTA may comprise a molten layer. The fluidization enhancing additive may not undergo reduction in the fluidized bed during contacting the hydrocarbon with the particulate material and may be present in an amount that maintains sufficient fluidization of the particulate material.
    Type: Application
    Filed: February 19, 2021
    Publication date: March 23, 2023
    Applicants: Dow Global Technologies LLC, EcoCatalytic Inc.
    Inventors: Elena Y. Chung, John A. Sofranko, William K. Wang, Soumen Kundu, Hangyao Wang, Barry B. Fish, Matthew T. Pretz
  • Patent number: 11596914
    Abstract: A process for commencing a continuous reaction in a reactor system includes introducing a catalyst to a catalyst processing portion of the reactor system, the catalyst initially having a first temperature of 500 C or less, and contacting the catalyst at the first temperature with a commencement fuel gas stream, which includes at least 80 mol % commencement fuel gas, in the catalyst processing portion. Contacting of the catalyst with the commencement fuel gas stream causes combustion of the commencement fuel gas. The process includes maintaining the contacting of the catalyst with the commencement fuel gas stream until the temperature of the catalyst increases from the first temperature to a second temperature at which combustion of a regenerator fuel source maintains an operating temperature range in the catalyst processing portion.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: March 7, 2023
    Assignee: Dow Global Technologies LLC
    Inventor: Matthew T. Pretz
  • Publication number: 20220356130
    Abstract: According to one or more embodiments, a method for forming light olefins may comprise introducing a hydrocarbon feed stream into a reactor, reacting the hydrocarbon feed stream with a dehydrogenation catalyst in the reactor to form a high temperature dehydrogenated product, separating at least a portion of the dehydrogenation catalyst from the high temperature dehydrogenated product in a primary separation device, combining the high temperature dehydrogenation product with a quench stream to cool the high temperature dehydrogenation product and form an intermediate temperature dehydrogenation product, and cooling the intermediate temperature dehydrogenation product to form a cooled dehydrogenation product.
    Type: Application
    Filed: June 12, 2020
    Publication date: November 10, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Hangyao Wang, Anthony Plauck, Adam M. McNeeley
  • Publication number: 20220340505
    Abstract: A method for processing a chemical stream includes contacting a feed stream with a catalyst in a reactor portion of a reactor system that includes a reactor portion and a catalyst processing portion. The catalyst includes platinum, gallium, or both and contacting the feed stream with the catalyst causes a reaction which forms an effluent stream. The method includes separating the effluent stream from the catalyst, passing the catalyst to the catalyst processing portion, and processing the catalyst in the catalyst processing portion. Processing the catalyst includes passing the catalyst to a combustor, combusting a supplemental fuel in the combustor to heat the catalyst, treating the heated catalyst with an oxygen-containing gas to produce a reactivated catalyst, and passing the reactivated catalyst from the catalyst processing portion to the reactor portion. The supplemental fuel may include a molar ratio of hydrogen to other combustible fuels of at least 1:1.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Mark W. Stewart, Lin Luo, Hangyao Wang
  • Patent number: 11478769
    Abstract: A method for processing a chemical stream includes contacting a feed stream with a catalyst in an upstream reactor section of a reactor having the upstream reactor section and a downstream reactor section, passing an intermediate product stream to the downstream reactor section, and introducing a riser quench fluid into the downstream reactor section, upstream reactor section, or transition section and into contact with the intermediate product stream and the catalyst to slow or stop the reaction. The method includes separating at least a portion of the catalyst from the product stream, passing the product stream to a product processing section, cooling the product stream, and separating a portion of the riser quench fluid from the product stream. The riser quench fluid separated from the product stream may be recycled back to the downstream reactor section, upstream reactor section, or transition section as the riser quench fluid.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: October 25, 2022
    Assignee: Dow Global Technologies LLC
    Inventor: Matthew T. Pretz