Patents by Inventor Matthias Friedrich
Matthias Friedrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240279684Abstract: A first aspect of the invention relates to the use of a saponin in the in vitro delivery of a nucleic acid into a cell. Typically, the nucleic acid is plasmid DNA, e.g. with a relatively large size of at least 5.5 kbp. In embodiments, the nucleic acid is transfected into cells in the presence of saponin GE1741 and/or saponin SO1861. A second aspect of the invention relates to a method for delivering a nucleic acid encoding for a CRISPR/Cas construct into a cell in vitro. Typically, the nucleic acid is plasmid DNA, e.g. with a relatively large size of at least 5.5 kbp. In embodiments, the nucleic acid is transfected into cells in the presence of saponin GE1741 and/or saponin SO1861. In embodiments, the nucleic acid is combined with poly-lysine, forming nanoplexes for transfection of the nucleic acid into a In cell. A third aspect of the invention relates to a kit of parts for delivering a nucleic acid encoding for a CRISPR/Cas construct into a cell in vitro.Type: ApplicationFiled: May 19, 2022Publication date: August 22, 2024Inventors: Ruben POSTEL, Alexander WENG, Matthias Friedrich MELZIG, Simko SAMA
-
Publication number: 20240158224Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.Type: ApplicationFiled: December 14, 2023Publication date: May 16, 2024Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geißler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
-
Patent number: 11905167Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.Type: GrantFiled: September 15, 2022Date of Patent: February 20, 2024Assignee: Infineon Technologies AGInventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
-
Publication number: 20240017986Abstract: A MEMS device comprises a first membrane structure having a reinforcement region formed from one piece of the first membrane structure, wherein the reinforcement region has a larger layer thickness than an adjoining region of the first membrane structure. The MEMS device includes an electrode structure, wherein the electrode structure is vertically spaced apart from the first membrane structure.Type: ApplicationFiled: July 14, 2023Publication date: January 18, 2024Inventors: Stefan Barzen, Alexander Frey, Matthias Friedrich Herrmann, Jun Cheng Ooi, Hans-Jörg Timme
-
Publication number: 20230339743Abstract: A MEMS device includes a first deflectable membrane structure, a rigid electrode structure and a second deflectable membrane structure in a vertically spaced configuration. The rigid electrode structure is arranged between the first and second deflectable membrane structures. The first and second deflectable membrane structures each includes a deflectable portion, and the deflectable portions of the first and second deflectable membrane structures are mechanically coupled by mechanical connection elements to each other and are mechanically decoupled from the rigid electrode structure. At least a subset of the mechanical connection elements are elongated mechanical connection elements.Type: ApplicationFiled: April 24, 2023Publication date: October 26, 2023Inventors: Hans-Jörg Timme, Stefan Barzen, Marc Füldner, Stefan Geißler, Matthias Friedrich Herrmann, Maria Kiriak, Abidin Güçlü Onaran, Konstantin Tkachuk, Arnaud Walther
-
Publication number: 20230301541Abstract: A method and apparatus for obtaining biomarkers of microvascular or macrovascular function in an individual includes receiving a continuous blood-oxygen-level-dependent (BOLD) cardiac magnetic resonance (CMR) image series spanning a plurality of cardiac cycles and respiratory states, generating a plurality of phase-matched single-cycle image series that are temporally aligned at a plurality of phases forming phase-vectors, performing a Windowed Matrix Decomposition (WMD) operation on the images of each phase-vector to generate low-rank image components, constructing a composite single-cycle image series utilizing the low-rank image components, and computing one or more oxygen perfusion biomarkers utilizing the composite image series.Type: ApplicationFiled: December 21, 2020Publication date: September 28, 2023Inventors: Matthias FRIEDRICH, Mitchel BENOVOY, Elizabeth Grace HILLIER
-
Patent number: 11691871Abstract: A MEMS vibration sensor includes a membrane having an inertial mass, the membrane being affixed to a holder of the MEMS vibration sensor; and a segmented backplate spaced apart from the membrane, the segmented backplate being affixed to the holder.Type: GrantFiled: June 18, 2021Date of Patent: July 4, 2023Assignee: Infineon Technologies AGInventors: Somu Goswami, Christian Bretthauer, Matthias Friedrich Herrmann, Gunar Lorenz
-
Patent number: 11693021Abstract: A MEMS vibration sensor includes a piezoelectric membrane including a segmented electrode affixed to a holder; and an inertial mass affixed to the piezoelectric membrane, wherein the segmented electrode includes four segmentation zones, wherein, in an X-direction, a signal from a first segmentation zone is equal to a signal from a third segmentation zone, a signal from a second segmentation zone is equal to a signal from a fourth segmentation zone, and the signal from the first segmentation zone and the signal from the second segmentation zone have opposite signs, and wherein, in a Y-direction, a signal from the first segmentation zone is equal to the signal from the second segmentation zone, the signal from the third segmentation zone is equal to the signal from the fourth segmentation zone, and the signal from first segmentation zone and the signal from the third segmentation zone have opposite signs.Type: GrantFiled: June 22, 2021Date of Patent: July 4, 2023Assignee: Infineon Technologies AGInventors: Somu Goswami, Christian Bretthauer, Matthias Friedrich Herrmann, Gunar Lorenz, Pradyumna Mishra, Daniel Neumaier, David Tumpold
-
Publication number: 20230192884Abstract: The present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to a target cell surface antigen, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3c? chain and a third domain, which is the specific Fc modality. Moreover, the invention provides a polynucleotide, encoding the antibody construct, a vector comprising this polynucleotide, host cells, expressing the construct and a pharmaceutical composition comprising the same.Type: ApplicationFiled: July 12, 2022Publication date: June 22, 2023Inventors: Tobias Raum, Markus Münz, Johannes Brozy, Peter Kufer, Patrick Hoffmann, Matthias Friedrich, Benno Rattel, Pamela Bogner, Andreas Wolf, Cornelius Pompe
-
Publication number: 20230184610Abstract: A sensor arrangement includes a substrate having a through opening between a first and a second main surface region, a sound transducing portion at the first main surface region of the substrate and spanning the through opening in the substrate, and a pressure sensing portion at the first main surface region of the substrate and fluidically coupled to the through opening in the substrate. The sound transducing portion includes a deflectable membrane structure, and a counter electrode. The pressure sensing portion includes a first and second rigid electrode and a deflectable membrane structure. The deflectable membrane structure of the pressure sensing portion opposes the plane of the first main surface region of the substrate. The first and second rigid electrodes of the pressure sensor form a reference capacitor of the pressure sensor, and the second rigid electrode and the membrane structure form a sense capacitor of the pressure sensor.Type: ApplicationFiled: December 7, 2022Publication date: June 15, 2023Inventors: Athanasios Kollias, Marc Fueldner, Matthias Friedrich Herrmann, Gunar Lorenz, Andreas Wiesbauer
-
Patent number: 11661462Abstract: The present invention provides to a bispecific single chain antibody construct binding to a target cell surface antigen via a first binding domain and to the T cell surface antigen CD3 via a second binding domain, wherein serum albumin is fused to the C-terminus of the antibody construct. Moreover, the invention provides a polynucleotide encoding the antibody construct, a vector comprising said polynucleotide and a host cell transformed or transfected with said vector. Furthermore, the invention provides a process for the production of the antibody construct of the invention, a medical use of said antibody construct and a kit comprising said antibody construct.Type: GrantFiled: July 31, 2015Date of Patent: May 30, 2023Assignee: AMGEN RESEARCH (MUNICH) GMBHInventors: Benno Rattel, Matthias Friedrich, Peter Kufer, Patrick Hoffmann, Tobias Raum, Markus Münz, Ines Herrmann, Ralf Lutterbüse, Elisabeth Nahrwold
-
Publication number: 20230093169Abstract: The present invention relates to medical combination products comprising (i) at least one antibody construct comprising at least one domain which binds to a target antigen expressed on the surface of a cell and at least one other domain which binds to CD3 as well as (ii) at least one molecule that is an antagonist of/an inhibitor of signaling, which is based on an interaction of TNF with its cognate receptor (TNFR), wherein the antagonisation or the inhibition of TNF or its cognate receptor prevents, reduces, or blocks TNF/TNFR mediated signalling. Furthermore, the invention provides therapeutic and preventive methods and medical uses of said combination products, as well as a kit comprising said at least one antibody construct and at least one antagonist/inhibitor of TNF or its cognate receptor, wherein the interaction of said antagonist/inhibitor of TNF with its cognate receptor reduces, mitigates, prevents, or treats cytokine release syndrome.Type: ApplicationFiled: January 22, 2021Publication date: March 23, 2023Inventors: Benno Rattel, Matthias Friedrich, Oliver Thomas, Tara Arvedson, Jackson Egen, Jason DeVoss, Xiaoting Wang, Grit Lorenczewski
-
Publication number: 20230002219Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.Type: ApplicationFiled: September 15, 2022Publication date: January 5, 2023Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Hermann, Ulrich Krumbien, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
-
Publication number: 20220402752Abstract: A MEMS vibration sensor includes a membrane having an inertial mass, the membrane being affixed to a holder of the MEMS vibration sensor; and a segmented backplate spaced apart from the membrane, the segmented backplate being affixed to the holder.Type: ApplicationFiled: June 18, 2021Publication date: December 22, 2022Applicants: Infineon Technologies AG, Infineon Technologies AGInventors: Somu Goswami, Christian Bretthauer, Matthias Friedrich Herrmann, Gunar Lorenz
-
Patent number: 11524891Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.Type: GrantFiled: January 18, 2021Date of Patent: December 13, 2022Assignee: Infineon Technologies AGInventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
-
Patent number: 11434302Abstract: The present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to a target cell surface antigen, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3? chain and a third domain, which is the specific Fc modality. Moreover, the invention provides a polynucleotide, encoding the antibody construct, a vector comprising this polynucleotide, host cells, expressing the construct and a pharmaceutical composition comprising the same.Type: GrantFiled: February 2, 2017Date of Patent: September 6, 2022Assignee: AMGEN RESEARCH (MUNICH) GMBHInventors: Tobias Raum, Markus Münz, Johannes Brozy, Peter Kufer, Patrick Hoffmann, Matthias Friedrich, Benno Rattel, Pamela Bogner, Andreas Wolf, Cornelius Pompe
-
Patent number: 11352433Abstract: The present invention provides bispecific antibody constructs of a specific Fc modality characterized by comprising a first domain binding to BCMA, a second domain binding to an extracellular epitope of the human and/or the Macaca CD3? chain and a third domain, which is the specific Fc modality. Moreover, the invention provides a polynucleotide, encoding the antibody construct, a vector comprising this polynucleotide, host cells, expressing the construct and a pharmaceutical composition comprising the same.Type: GrantFiled: April 2, 2019Date of Patent: June 7, 2022Assignees: AMGEN RESEARCH (MUNICH) GMBH, AMGEN INC.Inventors: Tobias Raum, Markus Münz, Johannes Brozy, Peter Kufer, Patrick Hoffmann, Matthias Friedrich, Benno Rattel, Pamela Bogner, Andreas Wolf, Cornelius Pompe
-
Publication number: 20210385584Abstract: A combined MicroElectroMechanical structure (MEMS) includes a first piezoelectric membrane having one or more first electrodes, the first piezoelectric membrane being affixed between a first holder and a second holder; and a second piezoelectric membrane having an inertial mass and one or more second electrodes, the second piezoelectric membrane being affixed between the second holder and a third holder.Type: ApplicationFiled: June 22, 2021Publication date: December 9, 2021Inventors: Somu Goswami, Christian Bretthauer, Matthias Friedrich Herrmann, Gunar Lorenz, Pradyumna Mishra, Daniel Neumaier, David Tumpold
-
Publication number: 20210139319Abstract: A microfabricated structure includes a deflectable membrane, a first clamping layer on a first surface of the deflectable membrane, a second clamping layer on a second surface of the deflectable membrane, a first perforated backplate on the first clamping layer, and a second perforated backplate on the second clamping layer, wherein the first clamping layer comprises a first tapered edge portion having a negative slope between the first perforated backplate and the deflectable membrane.Type: ApplicationFiled: January 18, 2021Publication date: May 13, 2021Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
-
Patent number: 10981780Abstract: A microfabricated structure includes a deflectable membrane, a first clamping layer on a first surface of the deflectable membrane, a second clamping layer on a second surface of the deflectable membrane, a first perforated backplate on the first clamping layer, and a second perforated backplate on the second clamping layer, wherein the first clamping layer comprises a first tapered edge portion having a negative slope between the first perforated backplate and the deflectable membrane.Type: GrantFiled: August 19, 2019Date of Patent: April 20, 2021Assignee: INFINEON TECHNOLOGIES AGInventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner