Patents by Inventor Matthias Merz

Matthias Merz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9034637
    Abstract: A detector device comprises a substrate (50), a source region (S) and a drain region (D), and a channel region (65) between the source and drain regions. A nanopore (54) passes through the channel region, and connects fluid chambers (56,58) on opposite sides of the substrate. A voltage bias is provided between the fluid chambers, the source and drain regions and a charge flow between the source and drain regions is sensed. The device uses a nanopore for the confinement of a sample under test (for example nucleotides) close to a sensor. The size of the sensor can be made similar to the spacing of adjacent nucleotides in a DNA strand. In this way, the disadvantages of PCR based techniques for DNA sequencing are avoided, and single nucleotide resolution can be attained.
    Type: Grant
    Filed: April 5, 2008
    Date of Patent: May 19, 2015
    Assignee: NXP, B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Gilberto Curatola
  • Patent number: 9020607
    Abstract: The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 28, 2015
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Remco H.W. Pijnenburg
  • Patent number: 9006738
    Abstract: The invention relates to an electronic device for measuring and/or controlling a property of an analyte (100). The electronic device comprises: i) an electrode (Snsr) forming an interface with the analyte (100) in which the electrode (Snsr) is immersed in operational use, the interface having an interface temperature (T), and ii) a resistive heater (Htr) being thermally and capacitively coupled to the electrode (Snsr), the resistive heater (Htr) being configured for setting the interface temperature (T) by controlling a current through the resistive heater (Htr). The resistive heater (Htr) is provided with signal integrity protection for reducing the capacitive charging of the electrode (Snsr) by the resistive heater (Htr) if the current through the resistive heater (Htr) is modulated.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: April 14, 2015
    Assignee: NXP, B.V.
    Inventor: Matthias Merz
  • Patent number: 8988088
    Abstract: Disclosed is a liquid immersion sensor comprising a substrate (10) carrying a conductive sensing element (20) and a corrosive agent (30) for corroding the conductive sensing element, said corrosive agent being immobilized in the vicinity of the conductive sensing element and being soluble in said liquid.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: March 24, 2015
    Assignee: Quotainne Enterprises LLC
    Inventors: Aurelie Humbert, Matthias Merz, Roel Daamen, Youri Victorovitch Ponomarev
  • Patent number: 8963563
    Abstract: A capacitive sensor for detecting the presence of a substance includes a plurality of upstanding conductive pillars arranged within a first layer of the sensor, a first electrode connected to a first group of the pillars, a second electrode connected to a second, different group of the pillars, and a dielectric material arranged adjacent the pillars, for altering the capacitance of the sensor in response to the presence of said substance.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev, Roel Daamen, Marcus Johannes Henricus van Dal
  • Patent number: 8957687
    Abstract: The invention relates to an electrochemical sensor integrated on a substrate, the electrochemical sensor including: a field effect transistor integrated on the substrate and having a source, gate and drain connections, said gate of the field effect transistor including: a sensing gate conductively coupled to a sensing electrode; and a bias gate, wherein the sensing gate is capacitively coupled to the bias gate and the bias gate is capacitively coupled to the substrate.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: February 17, 2015
    Assignee: NXP, B.V.
    Inventors: Axel Nackaerts, Matthias Merz, Youri Victorovitch Ponomarev
  • Patent number: 8925371
    Abstract: A sensor (2) for sensing a first substance and a second substance, the sensor comprising first (3) and second (5) sensor components each comprising a first material (20), the first material being sensitive to both the first substance and the second substance, the sensor further comprising a barrier (18) for preventing the second substance from passing into the second sensor component (5).
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: January 6, 2015
    Assignee: NXP, B.V.
    Inventors: Aurelie Humbert, Youri Victorovitch Ponomarev, Roel Daamen, Matthias Merz
  • Publication number: 20140374251
    Abstract: Disclosed is a pH and conductivity sensor including a carrier comprising a plurality of conductive tracks and an exposed conductive area defining a reference electrode connected to a first track of said plurality of conductive tracks, a sensing device mounted on the carrier and connected to at least a second track of said plurality of conductive tracks, the sensing device including an exposed surface that is sensitive to H+ concentrations, and a plurality of electrodes adjacent to the exposed surface, an encapsulation covering the carrier, said encapsulation including a first cavity exposing a surface of the sensing device, and a second cavity exposing the exposed conductive area.
    Type: Application
    Filed: July 30, 2014
    Publication date: December 25, 2014
    Inventors: Dimitri Soccol, Matthias Merz
  • Patent number: 8906534
    Abstract: A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Romano Hoofman, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev, Remco Henricus Wilhelmus Pijnenburg, Gilberto Curatola
  • Patent number: 8872520
    Abstract: The present invention relates to a sensor comprising a substrate (10) carrying a field effect transistor (30) having a gate electrode (32), the sensor further comprising a measurement electrode (36) spatially separated from the gate electrode; and a reference electrode (40), said measurement electrode being in configurable conductive contact with said gate electrode, the sensor further comprising a charge storage element (60) comprising a first electrode connected to a node (38) between the measurement electrode and the gate electrode; and a second electrode configurably connected to a known potential source (80). The present invention further relates to a method of performing a measurement with such a sensor.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: October 28, 2014
    Assignee: NXP, B.V.
    Inventors: Axel Nackaerts, Matthias Merz
  • Patent number: 8864968
    Abstract: An electrochemical sensor device including a sensor chip having an integrated electrochemical sensor element; and a substrate having a first surface on which the sensor chip is mounted, the substrate comprising a reference electrode structure for the integrated electrochemical sensor element, the reference electrode structure connected to the sensor chip via an electrical connection on the first surface of the substrate.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: October 21, 2014
    Assignee: NXP B.V.
    Inventors: Matthias Merz, Youri Victorovitch Ponomarev
  • Patent number: 8866239
    Abstract: A method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over the components, the metallization stack comprising a first sensing element and a second sensing element adjacent to the first sensing element.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 21, 2014
    Assignee: NXP B.V.
    Inventors: Marcus Van Dal, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev
  • Publication number: 20140309548
    Abstract: The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: SAPIENS STEERING BRAIN STIMULATION B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Remco H.W. Pijnenburg
  • Patent number: 8853798
    Abstract: Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12, 14, 16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24, 26, 28) covering the metallization stack; a gas sensor including a sensing material portion (32, 74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 7, 2014
    Assignee: NXP, B.V.
    Inventor: Matthias Merz
  • Patent number: 8847339
    Abstract: Disclosed is an integrated circuit comprising a substrate (10) including semiconductor devices and a metallization stack (20) over said substrate for interconnecting said devices, the metallization stack comprising a cavity (36), and a thermal conductivity sensor comprising at least one conductive portion (16, 18) of said metallization stack suspended in said cavity. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 30, 2014
    Assignee: NXP B.V.
    Inventors: Matthias Merz, Aurelie Humbert, David Tio Castro
  • Publication number: 20140262781
    Abstract: Disclosed is a pH sensor comprising a carrier (10) comprising a plurality of conductive tracks and an exposed conductive area (40) defining a reference electrode connected to one of said conductive tracks; a sensing device (30) mounted on the carrier and connected at least one other of said conductive tracks; an encapsulation (20) covering the carrier, said encapsulation comprising a first cavity (22) exposing a surface (32) of the sensing device and a second cavity (24) exposing the exposed conductive area, said second cavity comprising a reference electrode material (42) and an ion reservoir material (44) sharing at least one ion type with said reference electrode material, the reference electrode material being sandwiched between the exposed conductive area and the ion reservoir material. A method of manufacturing such a pH sensor is also disclosed.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: NXP B.V.
    Inventors: Matthias Merz, Coenraad Cornelis Tak, Romano Hoofman
  • Patent number: 8801917
    Abstract: The invention relates to a method of determining a charged particle concentration in an analyte (100), the method comprising steps of: i) determining at least two measurement points of a surface-potential versus interface-temperature curve (c1, c2, c3, c4), wherein the interface temperature is obtained from a temperature difference between a first interface between a first ion-sensitive dielectric (Fsd) and the analyte (100) and a second interface between a second ion-sensitive dielectric (Ssd) and the analyte (100), and wherein the surface-potential is obtained from a potential difference between a first electrode (Fe) and a second electrode (Se) onto which said first ion-sensitive dielectric (Fsd) and said second ion-sensitive dielectric (Ssd) are respectively provided, And ii) calculating the charged particle concentration from locations of the at least two measurement points of said curve (c1, c2, c3, c4).
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 12, 2014
    Assignee: NXP, B.V.
    Inventors: Matthias Merz, Youri Victorovitch Ponomarev, Gilberto Curatola
  • Patent number: 8798737
    Abstract: The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: August 5, 2014
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Remco H. W. Pijnenburg
  • Publication number: 20140202855
    Abstract: There is disclosed an electrochemical sensor device comprising: an integrated electrochemical sensor element having: a substrate; first and second electrodes formed on the upper surface of the substrate; and an electrolyte layer formed on the first and second electrodes so as to electrically contact both the first and second electrodes; and a sensor integrated circuit electrically connected to the first and second electrodes of the integrated electrochemical sensor element. The integrated electrochemical sensor element and the sensor integrated circuit are provided in a single package.
    Type: Application
    Filed: February 7, 2014
    Publication date: July 24, 2014
    Applicant: NXP B.V.
    Inventors: Matthias Merz, Dimitri Soccol
  • Patent number: 8742470
    Abstract: Disclosed is a pH sensor comprising a carrier (10) comprising a plurality of conductive tracks and an exposed conductive area (40) defining a reference electrode connected to one of said conductive tracks; a sensing device (30) mounted on the carrier and connected at least one other of said conductive tracks; an encapsulation (20) covering the carrier, said encapsulation comprising a first cavity (22) exposing a surface (32) of the sensing device and a second cavity (24) exposing the exposed conductive area, said second cavity comprising a reference electrode material (42) and an ion reservoir material (44) sharing at least one ion type with said reference electrode material, the reference electrode material being sandwiched between the exposed conductive area and the ion reservoir material. A method of manufacturing such a pH sensor is also disclosed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 3, 2014
    Assignee: NXP, B.V.
    Inventors: Matthias Merz, Coenraad Cornelis Tak, Romano Hoofman