Patents by Inventor Matthias Schnell

Matthias Schnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961531
    Abstract: An apparatus for processing an audio signal includes a configurable first audio signal processor for processing the audio signal in accordance with different configuration settings to obtain a processed audio signal, wherein the apparatus is adapted so that different configuration settings result in different sampling rates of the processed audio signal. The apparatus furthermore includes n analysis filter bank having a first number of analysis filter bank channels, a synthesis filter bank having a second number of synthesis filter bank channels, a second audio processor being adapted to receive and process an audio signal having a predetermined sampling rate, and a controller for controlling the first number of analysis filter bank channels or the second number of synthesis filter bank channels in accordance with a configuration setting.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: April 16, 2024
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Lohwasser, Manuel Jander, Max Neuendorf, Ralf Geiger, Markus Schnell, Matthias Hildenbrand, Tobias Chalupka
  • Publication number: 20240108216
    Abstract: Improved optical coherence tomography systems and methods to measure thickness of the retina are presented. The systems may be compact, handheld, provide in-home monitoring, allow the patient to measure himself or herself, and be robust enough to be dropped while still measuring the retina reliably.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Applicant: ACUCELA INC.
    Inventors: Lukas SCHEIBLER, Matthias PFISTER, Urban SCHNELL, Stefan TROLLER, Ryo KUBOTA
  • Patent number: 11929084
    Abstract: An audio encoder for encoding an audio signal has: a first encoding processor for encoding a first audio signal portion in a frequency domain, having: a time frequency converter for converting the first audio signal portion into a frequency domain representation; an analyzer for analyzing the frequency domain representation to determine first spectral portions to be encoded with a first spectral resolution and second regions to be encoded with a second resolution; and a spectral encoder for encoding the first spectral portions with the first spectral resolution and encoding the second portions with the second resolution; a second encoding processor for encoding a second different audio signal portion in the time domain; a controller for analyzing and determining, which portion of the audio signal is the first audio signal portion encoded in the frequency domain and which portion is the second audio signal portion encoded in the time domain; and an encoded signal former for forming an encoded audio signal havi
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: March 12, 2024
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Martin Dietz, Markus Multrus, Guillaume Fuchs, Emmanuel Ravelli, Matthias Neusinger, Markus Schnell, Benjamin Schubert, Bernhard Grill
  • Patent number: 11915712
    Abstract: An audio encoder for encoding an audio signal includes: a first encoding processor for encoding a first audio signal portion in a frequency domain, wherein the first encoding processor includes: a time frequency converter for converting the first audio signal portion into a frequency domain representation having spectral lines up to a maximum frequency of the first audio signal portion; a spectral encoder for encoding the frequency domain representation; a second encoding processor for encoding a second different audio signal portion in the time domain; a cross-processor for calculating, from the encoded spectral representation of the first audio signal portion, initialization data of the second encoding processor, so that the second encoding processing is initialized to encode the second audio signal portion immediately following the first audio signal portion in time in the audio signal; a controller configured for analyzing the audio signal and for determining, which portion of the audio signal is the firs
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: February 27, 2024
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Martin Dietz, Markus Multrus, Guillaume Fuchs, Emmanuel Ravelli, Matthias Neusinger, Markus Schnell, Benjamin Schubert, Bernhard Grill
  • Publication number: 20230126396
    Abstract: The present disclosure is directed towards chimeric glycoproteins wherein the clip region, a core region, a flap region, and a transmembrane and cytoplasmic domain are defined by starting from the amino terminus of the protein, these domains are comprised of the following amino acid residue ranges: clip, 1 through 40 to 60; core, 40 to 60 through 249 to 281; flap, 249 to 281 through 419 to 459; the transmembrane domain is comprised of amino acids 460 through 480, and the remaining amino acids 481 through 525 comprise the cytoplasmic domain; and wherein the clip, core, flap, transmembrane, and cytoplasmic domain comprise a chimeric combination of at least two lyssavirus, wherein the chimeric glycoprotein is advantageously inserted into a rabies-based vaccine vector.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 27, 2023
    Inventors: Matthias Schnell, Christine Rettew Fisher, Christoph Wirblich, Gene Tan
  • Patent number: 11484586
    Abstract: The present disclosure is directed towards chimeric glycoproteins wherein the clip region, a core region, a flap region, and a transmembrane and cytoplasmic domain are defined by starting from the amino terminus of the protein, these domains are comprised of the following amino acid residue ranges: clip, 1 through 40 to 60; core, 40 to 60 through 249 to 281; flap, 249 to 281 through 419 to 459; the transmembrane domain is comprised of amino acids 460 through 480, and the remaining amino acids 481 through 525 comprise the cytoplasmic domain; and wherein the clip, core, flap, transmembrane, and cytoplasmic domain comprise a chimeric combination of at least two lyssavirus, wherein the chimeric glycoprotein is advantageously inserted into a rabies-based vaccine vector.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: November 1, 2022
    Assignees: Thomas Jefferson University, ICAHN School of Medicine at Mount Sinai
    Inventors: Matthias Schnell, Christine Rettew Fisher, Christoph Wirblich, Gene Tan
  • Publication number: 20220072697
    Abstract: The present disclosure provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a coronavirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a coronavirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present disclosure provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one coronavirus immunogenic glycoprotein fragment, as well as pharmaceutical compositions comprising the vaccine vectors.
    Type: Application
    Filed: May 4, 2021
    Publication date: March 10, 2022
    Inventors: Reed F. Johnson, Matthias Schnell, Lisa E. Hensley, Christoph Wirblich, Christopher M. Coleman, Matthew S. Frieman
  • Patent number: 11041170
    Abstract: The present disclosure provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a coronavirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a coronavirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present disclosure provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one coronavirus immunogenic glycoprotein fragment, as well as pharmaceutical compositions comprising the vaccine vectors.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 22, 2021
    Assignees: Thomas Jefferson University, The United States of America, as represented by the Secretary, Department of Health & Human Service, University of Maryland
    Inventors: Reed F. Johnson, Matthias Schnell, Lisa E. Hensley, Christoph Wirblich, Christopher M. Coleman, Matthew B. Frieman
  • Patent number: 10849975
    Abstract: The present invention provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a filovirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a filovirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present invention provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one filovirus glycoprotein or an immunogenic fragment thereof, as well as pharmaceutical compositions comprising the vaccine vectors.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 1, 2020
    Assignees: Thomas Jefferson University, The United States of America, as Represented by the Secretary, Department of Health and Human Services Services
    Inventors: Joseph E. Blaney, Jason Paragas, Peter Jahrling, Reed Johnson, Matthias Schnell
  • Publication number: 20190062785
    Abstract: The present disclosure provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a coronavirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a coronavirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present disclosure provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one coronavirus immunogenic glycoprotein fragment, as well as pharmaceutical compositions comprising the vaccine vectors.
    Type: Application
    Filed: March 31, 2017
    Publication date: February 28, 2019
    Inventors: Reed F. Johnson, Matthias Schnell, Lisa E. Hensley, Christoph Wirblich, Christopher M. Coleman, Matthew B. Frieman
  • Patent number: 10107272
    Abstract: A sliding shoe for supporting a piston of a hydrostatic axial piston machine against a swash plate includes a sliding face that defines a central concentric pressure pocket that is flat in order to stabilize the sliding shoe. The pressure pocket has radial supply grooves in order to ensure an optimal supply of pressure medium to the pressure pocket from a central mouth opening. The radial supply grooves extend through the pressure pocket and as far as a circumferential groove which surrounds the pressure pocket.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: October 23, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Schnell, Stefan Hoppe, Timo Nafz
  • Publication number: 20160333867
    Abstract: A sliding shoe for supporting a piston of a hydrostatic axial piston machine against a swash plate includes a sliding face that defines a central concentric pressure pocket that is flat in order to stabilize the sliding shoe. The pressure pocket has radial supply grooves in order to ensure an optimal supply of pressure medium to the pressure pocket from a central mouth opening. The radial supply grooves extend through the pressure pocket and as far as a circumferential groove which surrounds the pressure pocket.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Inventors: Matthias Schnell, Stefan Hoppe, Timo Nafz
  • Patent number: 9273780
    Abstract: A sliding block for a piston of a hydraulic piston machine, includes a concave recess to receive a piston head and a sliding surface to support the piston. A lubricant channel passes through the sliding block from the concave recess to the sliding surface, and the concave recess transforms with a constant tangent i.e. without kinking into a transition segment of a constantly narrowing taper segment of the lubricant channel. The transition segment is convex.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: March 1, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Schnell, Alexander Nestler, Tobias Korte
  • Publication number: 20140212434
    Abstract: The present invention provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a filovirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a filovirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present invention provides a recombinant rabies virus vector omprising a nucleotide sequence encoding at least one filovirus glycoprotein or an immunogenic fragment thereof, as well as pharmaceutical compostions comprising the vaccine vectors.
    Type: Application
    Filed: February 2, 2012
    Publication date: July 31, 2014
    Applicant: The United States of America, as represented by the Secretary,Department of Health & HumanServices
    Inventors: Joseph E. Blaney, Jason Paragas, Peter Jahrling, Reed Johnson, Matthias Schnell
  • Publication number: 20130186267
    Abstract: A sliding block for a piston of a hydraulic piston machine, includes a concave recess to receive a piston head and a sliding surface to support the piston. A lubricant channel passes through the sliding block from the concave recess to the sliding surface, and the concave recess transforms with a constant tangent i.e. without kinking into a transition segment of a constantly narrowing taper segment of the lubricant channel. The transition segment is convex.
    Type: Application
    Filed: July 26, 2012
    Publication date: July 25, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Matthias Schnell, Alexander Nestler, Tobias Korte
  • Patent number: 8413637
    Abstract: The invention relates to a fuel injector comprising a nozzle retainer or an injector body, a valve body and a nozzle body, in which a preferably needle-shaped injection valve member is arranged to be vertically movable, said member releasing or closing at least one injection port leading to a combustion chamber of an internal combustion engine depending on the pressure relief of or the pressure load on a control chamber. The invention is characterized in that a valve comprising a preferably ball-shaped valve element is arranged in the nozzle retainer or in the injector body for the pressure relief of the control chamber.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 9, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Matthias Schnell
  • Publication number: 20100313852
    Abstract: The invention relates to a fuel injector comprising a nozzle retainer or an injector body, a valve body and a nozzle body, in which a preferably needle-shaped injection valve member is arranged to be vertically movable, said member releasing or closing at least one injection port leading to a combustion chamber of an internal combustion engine depending on the pressure relief of or the pressure load on a control chamber. The invention is characterized in that a valve comprising a preferably ball-shaped valve element is arranged in the nozzle retainer or in the injector body for the pressure relief of the control chamber.
    Type: Application
    Filed: October 31, 2008
    Publication date: December 16, 2010
    Inventor: Matthias Schnell
  • Patent number: 7695724
    Abstract: Recombinant rabies viruses in which the arginine residue of the glycoprotein (G) at amino acid position 333 is exchanged, renders these viruses nonpathogenic for immunocompetent mammals regardless of the route of infection. Some of these recombinant rabies viruses after several serial virus passages in newborn mice can become pathogenic for adult mice. The reversion to the pathogenic phenotype is associated with a thymidine to adenosine mutation (T?A) at position 639 of the G gene, which results in an asparagine to lysine exchange at position 194 of G. The codon at position 637-639 was changed by site directed mutagenesis to replace asparagine at position 194 by an amino acid that minimized the possibility for an Asn?Lys exchange at amino acid position 194 of G and prevents reversion to a pathogenic form of the virus.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: April 13, 2010
    Assignee: Thomas Jefferson University
    Inventors: Bernhard Dietzschold, Marie Luise Faber, Matthias Schnell, Milosz Faber
  • Publication number: 20080003657
    Abstract: Recombinant rabies viruses in which the arginine residue of the glycoprotein (G) at amino acid position 333 is exchanged, renders these viruses nonpathogenic for immunocompetent mammals regardless of the route of infection. Some of these recombinant rabies viruses after several serial virus passages in newborn mice can become pathogenic for adult mice. The reversion to the pathogenic phenotype is associated with a thymidine to adenosine mutation (TôA) at position 639 of the G gene, which results in an asparagine to lysine exchange at position 194 of G. The codon at position 637-639 was changed by site directed mutagenesis to replace asparagine at position 194 by an amino acid that minimized the possibility for an AsnôLys exchange at amino acid position 194 of G and prevents reversion to a pathogenic form of the virus.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 3, 2008
    Inventors: Bernhard Dietzschold, Marie-Luise Faber, Milosz Faber, Matthias Schnell
  • Patent number: 7081243
    Abstract: Replication-competent recombinant rhabdoviruses that lack a functional glycoprotein gene and express at least one foreign polypeptide such as a celluar receptor for another virus in their viral envelopes are useful in the treatment of pathogenic viruses. In one embodiment, a recombinant vesicular stomatitis virus (VSV) lacking its glycoprotein (G) gene and expressing instead the HIV receptor and a coreceptor is employed in a method for treating persons infected with HIV. The recombinant virus is defective for entry into normal cells but is able to control HIV infection in a T cell line by replicating in, and killing, HIV-infected cells.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: July 25, 2006
    Assignee: Yale University
    Inventors: John K. Rose, Matthias Schnell, E. Erik Johnson