Patents by Inventor Mattias E. Dahlstrom

Mattias E. Dahlstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150054131
    Abstract: A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventor: Mattias E. DAHLSTROM
  • Publication number: 20150048494
    Abstract: A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Inventor: Mattias E. DAHLSTROM
  • Publication number: 20150044862
    Abstract: A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventor: Mattias E. DAHLSTROM
  • Patent number: 8912574
    Abstract: A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mattias E. Dahlstrom, Dinh Dang, Qizhi Liu, Ramana M. Malladi
  • Patent number: 8482101
    Abstract: A bipolar transistor structure and a method for fabricating the bipolar transistor structure include: (1) a collector structure located at least in-part within a semiconductor substrate; (2) a base structure contacting the collector structure; and (3) an emitter structure contacting the base structure. The interface of the emitter structure and the base structure includes an oxygen impurity and at least one impurity selected from the group consisting of a fluorine impurity and a carbon impurity, to enhance performance of a bipolar transistor within the bipolar transistor structure. The impurities may be introduced into the interface by plasma etch treatment, or alternatively a thermal treatment followed by an anhydrous ammonia and hydrogen fluoride treatment, of a base material from which is comprised the base structure.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: John J. Benoit, Mattias E. Dahlstrom, Mark D. Dupuis, Peter B. Gray, Anthony K. Stamper
  • Patent number: 8405186
    Abstract: Disclosed are embodiments of an improved transistor structure (e.g., a bipolar transistor (BT) structure or heterojunction bipolar transistor (HBT) structure) and a method of forming the transistor structure. The structure embodiments can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method embodiments allow for self-aligning of the emitter to base regions and further allow the geometries of different features (e.g., the thickness of the dielectric layer, the width of the conductive strap, the width of the dielectric spacer and the width of the emitter layer) to be selectively adjusted in order to optimize transistor performance.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Mattias E. Dahlstrom, Peter B. Gray, David L. Harame, Russell T. Herrin, Alvin J. Joseph, Andreas D. Stricker
  • Publication number: 20120146098
    Abstract: A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mattias E. DAHLSTROM, Dinh DANG, Qizhi LIU, Ramana M. MALLADI
  • Publication number: 20110309471
    Abstract: Disclosed are embodiments of an improved transistor structure (e.g., a bipolar transistor (BT) structure or heterojunction bipolar transistor (HBT) structure) and a method of forming the transistor structure. The structure embodiments can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method embodiments allow for self-aligning of the emitter to base regions and further allow the geometries of different features (e.g., the thickness of the dielectric layer, the width of the conductive strap, the width of the dielectric spacer and the width of the emitter layer) to be selectively adjusted in order to optimize transistor performance.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Mattias E. Dahlstrom, Peter B. Gray, David L. Harame, Russell T. Herrin, Alvin J. Joseph, Andreas D. Stricker
  • Patent number: 7888745
    Abstract: An improved bipolar transistor with dual shallow trench isolation for reducing the parasitic component of the base to collector capacitance Ccb and base resistance Rb is provided. The structure includes a semiconductor substrate having at least a pair of neighboring first shallow trench isolation (STI) regions disposed therein. The pair of neighboring first STI regions defines an active area in the substrate. The structure also includes a collector disposed in the in the active area of the semiconductor substrate, a base layer disposed atop a surface of the semiconductor substrate in the active area, and a raised extrinsic base disposed on the base layer. In accordance with the present, the raised extrinsic base has an opening to a portion of the base layer. An emitter is located in the opening and extending on a portion of the patterned raised extrinsic base; the emitter is spaced apart and isolated from the raised extrinsic base.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Marwan H. Khater, Andreas D. Stricker, Bradley A. Orner, Mattias E. Dahlstrom
  • Publication number: 20100320571
    Abstract: A bipolar transistor structure and a method for fabricating the bipolar transistor structure include: (1) a collector structure located at least in-part within a semiconductor substrate; (2) a base structure contacting the collector structure; and (3) an emitter structure contacting the base structure. The interface of the emitter structure and the base structure includes an oxygen impurity and at least one impurity selected from the group consisting of a fluorine impurity and a carbon impurity, to enhance performance of a bipolar transistor within the bipolar transistor structure. The impurities may be introduced into the interface by plasma etch treatment, or alternatively a thermal treatment followed by an anhydrous ammonia and hydrogen fluoride treatment, of a base material from which is comprised the base structure.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Benoit, Mattias E. Dahlstrom, Mark D. Dupuis, Peter B. Gray, Anthony K. Stamper
  • Publication number: 20070298578
    Abstract: An improved bipolar transistor with dual shallow trench isolation for reducing the parasitic component of the base to collector capacitance Ccb and base resistance Rb is provided. The structure includes a semiconductor substrate having at least a pair of neighboring first shallow trench isolation (STI) regions disposed therein. The pair of neighboring first STI regions defines an active area in the substrate. The structure also includes a collector disposed in the in the active area of the semiconductor substrate, a base layer disposed atop a surface of the semiconductor substrate in the active area, and a raised extrinsic base disposed on the base layer. In accordance with the present, the raised extrinsic base has an opening to a portion of the base layer. An emitter is located in the opening and extending on a portion of the patterned raised extrinsic base; the emitter is spaced apart and isolated from the raised extrinsic base.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marwan H. Khater, Andreas D. Stricker, Bradley A. Orner, Mattias E. Dahlstrom