Patents by Inventor Mauro J. Kobrinsky

Mauro J. Kobrinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210159229
    Abstract: Described herein are IC devices that include semiconductor nanoribbons stacked over one another to realize high-density three-dimensional (3D) dynamic random-access memory (DRAM). An example device includes a first semiconductor nanoribbon, a second semiconductor nanoribbon, a first source or drain (S/D) region and a second S/D region in each of the first and second nanoribbons, a first gate stack at least partially surrounding a portion of the first nanoribbon between the first and second S/D regions in the first nanoribbon, and a second gate stack, not electrically coupled to the first gate stack, at least partially surrounding a portion of the second nanoribbon between the first and second S/D regions in the second nanoribbon. The device further includes a bitline coupled to the first S/D regions of both the first and second nanoribbons.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Kinyip Phoa, Mauro J. Kobrinsky, Tahir Ghani, Uygar E. Avci, Rajesh Kumar
  • Publication number: 20210151438
    Abstract: A three-dimensional memory array may include a first memory array and a second memory array, stacked above the first. Some memory cells of the first array may be coupled to a first layer selector transistor, while some memory cells of the second array may be coupled to a second layer selector transistor. The first and second layer selector transistor may be coupled to one another and to a peripheral circuit that controls operation of the first and/or second memory arrays. A different layer selector transistor may be used for each row of memory cells of a given memory array and/or for each column of memory cells of a given memory array. Such designs may allow increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 20, 2021
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Abhishek A. Sharma, Rajesh Kumar, Kinyip Phoa, Elliot Tan, Tahir Ghani, Swaminathan Sivakumar
  • Publication number: 20210134802
    Abstract: Described herein are IC devices that include transistors with contacts to one of the source/drain (S/D) regions being on the front side of the transistors and contacts to the other one of the S/D regions being on the back side of the transistors (i.e., “back-side contacts”). Using transistors with one front-side and one back-side S/D contacts provides advantages and enables unique architectures that were not possible with conventional front-end-of-line transistors with both S/D contacts being on one side.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Abhishek A. Sharma, Tahir Ghani, Doug Ingerly, Rajesh Kumar
  • Publication number: 20210125990
    Abstract: Described herein are IC devices that include TFT based memory arrays on both sides of a layer of logic devices. An example IC device includes a support structure (e.g., a substrate) on which one or more logic devices may be implemented. The IC device further includes a first memory cell on one side of the support structure, and a second memory cell on the other side of the support structure, where each of the first memory cell and the second memory cell includes a TFT as an access transistor. Providing TFT based memory cells on both sides of a layer of logic devices allows significantly increasing density of memory cells in a memory array having a given footprint area, or, conversely, significantly reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Mauro J. Kobrinsky, Conor P. Puls, Kevin Fischer, Bernhard Sell, Abhishek A. Sharma, Tahir Ghani
  • Publication number: 20210111129
    Abstract: An integrated circuit includes a base with one or more semiconductor devices. An insulating material is over the base and an interconnect structure is over the base. The interconnect structure includes vertical conductors extending through the insulating material in a spaced-apart arrangement. The interconnect structure comprises a conductor and a chalcogen, the chalcogen present in an amount of up to 5 atomic percent. In some embodiments, the chalcogen is present in an amount less than 2 atomic percent or less than 1 atomic percent.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Applicant: INTEL CORPORATION
    Inventors: Carl H. Naylor, Mauro J. Kobrinsky
  • Publication number: 20210111115
    Abstract: Transistor cell architectures including both front-side and back-side structures. A transistor may include one or more semiconductor fins with a gate stack disposed along a sidewall of a channel portion of the fin. One or more source/drain regions of the fin are etched to form recesses with a depth below the channel region. The recesses may extend through the entire fin height. Source/drain semiconductor is then deposited within the recess, coupling the channel region to a deep source/drain. A back-side of the transistor is processed to reveal the deep source/drain semiconductor material. One or more back-side interconnect metallization levels may couple to the deep source/drain of the transistor.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 15, 2021
    Applicant: Intel Corporation
    Inventors: Patrick Morrow, Mauro J. Kobrinsky, Mark T. Bohr, Tahir Ghani, Rishabh Mehandru
  • Publication number: 20210074823
    Abstract: Techniques are disclosed for backside source/drain (S/D) replacement for semiconductor devices with metallization on both sides (MOBS). The techniques described herein provide methods to recover or otherwise facilitate low contact resistance, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some cases, the techniques include forming sacrificial S/D material and a seed layer during frontside processing of a device layer including one or more transistor devices. The device layer can then be inverted and bonded to a host wafer. A backside reveal of the device layer can then be performed via grinding, etching, and/or CMP processes. The sacrificial S/D material can then be removed through backside S/D contact trenches using the seed layer as an etch stop, followed by the formation of relatively highly doped final S/D material grown from the seed layer, to provide enhanced ohmic contact properties. Other embodiments may be described and/or disclosed.
    Type: Application
    Filed: October 28, 2020
    Publication date: March 11, 2021
    Applicant: INTEL CORPORATION
    Inventors: Glenn A. Glass, Karthik Jambunathan, Anand S. Murthy, Chandra S. Mohapatra, Patrick Morrow, Mauro J. Kobrinsky
  • Patent number: 10892337
    Abstract: Techniques are disclosed for backside source/drain (S/D) replacement for semiconductor devices with metallization on both sides (MOBS). The techniques described herein provide methods to recover or otherwise facilitate low contact resistance, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some cases, the techniques include forming sacrificial S/D material and a seed layer during frontside processing of a device layer including one or more transistor devices. The device layer can then be inverted and bonded to a host wafer. A backside reveal of the device layer can then be performed via grinding, etching, and/or CMP processes. The sacrificial S/D material can then be removed through backside S/D contact trenches using the seed layer as an etch stop, followed by the formation of relatively highly doped final S/D material grown from the seed layer, to provide enhanced ohmic contact properties. Other embodiments may be described and/or disclosed.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 12, 2021
    Assignee: INTEL Corporation
    Inventors: Glenn A. Glass, Karthik Jambunathan, Anand S. Murthy, Chandra S. Mohapatra, Patrick Morrow, Mauro J. Kobrinsky
  • Patent number: 10886217
    Abstract: Transistor cell architectures including both front-side and back-side structures. A transistor may include one or more semiconductor fins with a gate stack disposed along a sidewall of a channel portion of the fin. One or more source/drain regions of the fin are etched to form recesses with a depth below the channel region. The recesses may extend through the entire fin height. Source/drain semiconductor is then deposited within the recess, coupling the channel region to a deep source/drain. A back-side of the transistor is processed to reveal the deep source/drain semiconductor material. One or more back-side interconnect metallization levels may couple to the deep source/drain of the transistor.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Mauro J. Kobrinsky, Mark T. Bohr, Tahir Ghani, Rishabh Mehandru
  • Patent number: 10797139
    Abstract: Methods and structures formed thereby are described, of forming self-aligned contact structures for microelectronic devices. An embodiment includes forming a trench in a source/drain region of a transistor device disposed in a device layer, wherein the device layer is on a substrate, forming a fill material in the trench, forming a source/drain material on the fill material, forming a first source/drain contact on a first side of the source/drain material, and then forming a second source drain contact on a second side of the source/drain material.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Mauro J. Kobrinsky, Kimin Jun, Il-Seok Son, Paul B. Fischer
  • Patent number: 10734412
    Abstract: Techniques are disclosed for backside contact resistance reduction for semiconductor devices with metallization on both sides (MOBS). In some embodiments, the techniques described herein provide methods to recover low contact resistance that would otherwise be present with making backside contacts, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some embodiments, the techniques include adding an epitaxial deposition of very highly doped crystalline semiconductor material in backside contact trenches to provide enhanced ohmic contact properties. In some cases, a backside source/drain (S/D) etch-stop layer may be formed below the replacement S/D regions of the one or more transistors formed on the transfer wafer (during frontside processing), such that when backside contact trenches are being formed, the backside S/D etch-stop layer may help stop the backside contact etch process before consuming a portion or all of the S/D material.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 4, 2020
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Chandra S. Mohapatra, Mauro J. Kobrinsky, Patrick Morrow
  • Patent number: 10720345
    Abstract: Techniques and mechanisms for forming a bond between two wafers. In an embodiment, a first wafer and a second wafer are positioned with respective wafer holders, and are deformed to form a first deformation of the first wafer and a second deformation of the second wafer. The first deformation and the second deformation are symmetrical with respect to a centerline which is between the first wafer and the second wafer. A portion of the first deformation is made to contact, and form a bond with, another portion of the second deformation. The bond is propagated along respective surfaces of the wafers to form a coupling therebetween. In another embodiment, one of the wafer holders comprises one of an array of elements to locally heat or cool a wafer, or an array of displacement stages to locally deform said wafer.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 21, 2020
    Assignee: Intel Corporation
    Inventors: Mauro J. Kobrinsky, Myra McDonnell, Brennen K. Mueller, Chytra Pawashe, Daniel Pantuso, Paul B. Fischer, Lance C. Hibbeler, Martin Weiss
  • Patent number: 10707186
    Abstract: Techniques and mechanisms for forming a bond between wafers using a compliant layer. In an embodiment, a layer or layers of one or more compliant materials is provided on a first surface of a first wafer, and the one or more compliant layers are subsequently bonded to a second surface of a second wafer. The bonded wafers are heated to an elevated temperature at which a compliant layer exhibits non-elastic deformations to facilitate relaxation of stresses caused by wafer distortions. In another embodiment, a material of the compliant layer exhibits viscoelastic behavior at room temperature, wherein stress is mitigated by allowing wafer distortion to relax at room temperature.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Mauro J. Kobrinsky, Jasmeet S. Chawla, Stefan Meister, Myra McDonnell, Chytra Pawashe, Daniel Pantuso
  • Publication number: 20200091348
    Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Inventors: Biswajeet GUHA, Mauro J. KOBRINSKY, Tahir GHANI
  • Publication number: 20200075770
    Abstract: Integrated circuit structures having differentiated neighboring partitioned source or drain contact structures are described. An integrated circuit structure includes a first gate stack over a first fin, and a second gate stack over a second fin. First and second epitaxial source or drain structures are at first and second ends of the first fin. Third and fourth epitaxial source or drain structures are at first and second ends of the second fin. A first conductive contact structure is coupled to one of the first or the second epitaxial source or drain structures, and has a first portion partitioned from a second portion. A second conductive contact structure is coupled to one of the third or the fourth epitaxial source or drain structures, and has a first portion partitioned from a second portion. The second conductive contact structure is neighboring the first conductive contact structure and has a composition different than a composition of the first conductive contact structure.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Mauro J. KOBRINSKY, Stephanie BOJARSKI, Myra MCDONNELL, Tahir GHANI
  • Publication number: 20200075771
    Abstract: Integrated circuit structures having partitioned source or drain contact structures, and methods of fabricating integrated circuit structures having partitioned source or drain contact structures, are described. For example, an integrated circuit structure includes a fin. A gate stack is over the fin. A first epitaxial source or drain structure is at a first end of the fin. A second epitaxial source or drain structure is at a second end of the fin. A conductive contact structure is coupled to one of the first or the second epitaxial source or drain structures. The conductive contact structure has a first portion partitioned from a second portion.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Mauro J. KOBRINSKY, Stephanie BOJARSKI, Babita DHAYAL, Biswajeet GUHA, Tahir GHANI
  • Patent number: 10553532
    Abstract: Embodiments of the invention include interconnect structures with overhead vias and through vias that are self-aligned with interconnect lines and methods of forming such structures. In an embodiment, an interconnect structure is formed in an interlayer dielectric (ILD). One or more first interconnect lines may be formed in the ILD. The interconnect structure may also include one or more second interconnect lines in the ILD that arranged in an alternating pattern with the first interconnect lines. Top surfaces of each of the first and second interconnect lines may be recessed below a top surface of the ILD. The interconnect structure may include a self-aligned overhead via formed over one or more of the first interconnect lines or over one or more of the second interconnect lines. In an embodiment, a top surface of the self-aligned overhead via is substantially coplanar with a top surface of the ILD.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 4, 2020
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Manish Chandhok, Robert L. Bristol, Mauro J. Kobrinsky, Kevin Lin
  • Patent number: 10529660
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Jessica M. Torres, Jeffery D. Bielefeld, Mauro J. Kobrinsky, Christopher J. Jezewski, Gopinath Bhimarasetti
  • Publication number: 20190378836
    Abstract: Described herein are apparatuses, methods, and systems associated with a deep trench via in a three-dimensional (3D) integrated circuit (IC). The 3D IC may include a logic layer having an array of logic transistors. The 3D IC may further include one or more front-side interconnects on a front side of the 3D IC and one or more back-side interconnects on a back side of the 3D IC. The deep trench may be in the logic layer to conductively couple a front-side interconnect to a back-side interconnect. The deep trench via may be formed in a diffusion region or gate region of a dummy transistor in the logic layer. Other embodiments may be described and claimed.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 12, 2019
    Inventors: Yih WANG, Rishabh MEHANDRU, Mauro J. KOBRINSKY, Tahir GHANI, Mark BOHR, Marni NABORS
  • Patent number: 10497613
    Abstract: A conductive route structure may be formed comprising a conductive trace and a conductive via, wherein the conductive via directly contacts the conductive trace. In one embodiment, the conductive route structure may be formed by forming a dielectric material layer on the conductive trace. A via opening may be formed through the dielectric material layer to expose a portion of the conductive trace and a blocking layer may be from only on the exposed portion of the conductive trace. A barrier line may be formed on sidewalls of the via opening and the blocking layer may thereafter be removed. A conductive via may then be formed within the via opening, wherein the conductive via directly contacts the conductive trace.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: December 3, 2019
    Assignee: INTEL CORPORATION
    Inventors: Jasmeet S. Chawla, Rami Hourani, Mauro J. Kobrinsky, Florian Gstrein, Scott B. Clendenning, Jeanette M. Roberts