Patents by Inventor Max C. Glenn

Max C. Glenn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9476712
    Abstract: A micro-electro-mechanical systems (MEMS) device comprises at least one proof mass configured to have a first voltage and a motor motion in a first horizontal direction. At least one sense plate is separated from the proof mass by a sense gap, with the sense plate having an inner surface facing the proof mass and a second voltage different than the first voltage. A set of stop structures are on the inner surface of the sense plate and are electrically isolated from the sense plate. The stop structures are configured to prevent contact of the inner surface of the sense plate with the proof mass in a vertical direction. The stop structures have substantially the same voltage as that of the proof mass, and are dimensioned to minimize energy exchange upon contact with the proof mass during a shock or acceleration event.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 25, 2016
    Assignee: Honeywell International Inc.
    Inventors: Timothy J. Hanson, Mark W. Weber, Max C. Glenn, Drew A. Karnick
  • Publication number: 20150033849
    Abstract: A micro-electro-mechanical systems (MEMS) device comprises at least one proof mass configured to have a first voltage and a motor motion in a first horizontal direction. At least one sense plate is separated from the proof mass by a sense gap, with the sense plate having an inner surface facing the proof mass and a second voltage different than the first voltage. A set of stop structures are on the inner surface of the sense plate and are electrically isolated from the sense plate. The stop structures are configured to prevent contact of the inner surface of the sense plate with the proof mass in a vertical direction. The stop structures have substantially the same voltage as that of the proof mass, and are dimensioned to minimize energy exchange upon contact with the proof mass during a shock or acceleration event.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: Honeywell International Inc.
    Inventors: Timothy J. Hanson, Mark W. Weber, Max C. Glenn, Drew A. Karnick
  • Publication number: 20140065770
    Abstract: A package assembly comprises a package base, a sensor die, an isolation plate, and a package interface plate. The isolation plate is bonded to the sensor die and has a plurality of flexible beams. Each flexible beam is configured to deflect under stress such that effects on the sensor die of a thermal mismatch between the package base and the sensor die are reduced. The package interface plate is bonded to the isolation plate and the package base. The package interface plate is configured to limit the maximum distance each flexible beam is able to deflect.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 6, 2014
    Applicant: Honeywell International Inc.
    Inventor: Max C. Glenn
  • Patent number: 8614491
    Abstract: A package assembly comprises a package base, a sensor die, an isolation plate, and a package interface plate. The isolation plate is bonded to the sensor die and has a plurality of flexible beams. Each flexible beam is configured to deflect under stress such that effects on the sensor die of a thermal mismatch between the package base and the sensor die are reduced. The package interface plate is bonded to the isolation plate and the package base. The package interface plate is configured to limit the maximum distance each flexible beam is able to deflect.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 24, 2013
    Assignee: Honeywell International Inc.
    Inventor: Max C. Glenn
  • Publication number: 20100252899
    Abstract: A package assembly comprises a package base, a sensor die, an isolation plate, and a package interface plate. The isolation plate is bonded to the sensor die and has a plurality of flexible beams. Each flexible beam is configured to deflect under stress such that effects on the sensor die of a thermal mismatch between the package base and the sensor die are reduced. The package interface plate is bonded to the isolation plate and the package base. The package interface plate is configured to limit the maximum distance each flexible beam is able to deflect.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 7, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Max C. Glenn
  • Publication number: 20100139373
    Abstract: Methods and apparatus for a MEMS sensor package are provided. In one embodiment, a MEMS sensor package comprises a MEMS sensor; a sensor body permeable to gas leakage at a first leak rate; a backfill gas that pressurizes the sensor body to a backfill pressure; wherein the backfill pressure provides a dampening of the MEMS sensor; and wherein the backfill pressure is set such than any increase in pressure within the sensor body due to gas leakage will not cause a deviation in a Q value of the MEMS sensor beyond a predefined range for at least a specified design service life for the MEMS sensor package.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 10, 2010
    Applicant: Honeywell Internationa Inc.
    Inventors: Todd L. Braman, Drew A. Karnick, Max C. Glenn, Harlan L. Curtis
  • Publication number: 20080271532
    Abstract: Structures and methods for frequency shifting rotational harmonics in MEMS devices are disclosed. An illustrative MEMS device can include a substrate, a sense electrode coupled to the substrate, and a proof mass adjacent to the sense electrode. A number of non-uniformly dispersed holes or openings on the proof mass can be configured to alter the distribution of mass within the proof mass. During operation, the presence of the holes or openings alters the frequency at which the proof mass rotates about a centerline in a rotational mode, reducing the introduction of harmonics into the drive and sense systems.
    Type: Application
    Filed: June 11, 2008
    Publication date: November 6, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: William P. Platt, Gary R. Knowles, Max C. Glenn
  • Patent number: 7314777
    Abstract: An automated process for performing MEMS packaging including automatically attaching a die to a chip carrier, resulting in a chip carrier assembly, automatically moving the chip carrier assembly into a vacuum chamber, wherein the vacuum chamber includes one or more lids therein, automatically securing a lid to the chip carrier assembly within the vacuum chamber, thereby forming a packaged die, and automatically removing the packaged die from the vacuum chamber. Unique vacuum chambers suitable for MEMS packaging are also disclosed.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: January 1, 2008
    Assignee: Honeywell International Inc.
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Patent number: 7297573
    Abstract: A method for assembling a micro-electromechanical system (MEMS) device that includes a micro-machine is described. The method comprises forming the micro-machine on a die, the die having a top surface and a bottom surface, providing a plurality of die bonding pedestals on a surface of a housing, and mounting at least one of the top surface of the die and components of the micro-machine to the die bonding pedestals such that a bottom surface of the die at least partially shields components of the micro-machine from loose gettering material.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: November 20, 2007
    Assignee: Honeywell International Inc.
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Patent number: 7074636
    Abstract: A method for reducing occurrences of loose gettering material particles within micro-electromechanical system (MEMS) devices is described. The MEMS devices include a micro-machine within a substantially sealed cavity formed by a housing and a cover for the housing. The cavity containing a getter mounted on a getter substrate which is to be attached to the cover. The method includes providing an area between a portion of the cover and a portion of the getter substrate, positioning the getter within the area, and attaching the getter substrate to the cover.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: July 11, 2006
    Assignee: Honeywell International Inc.
    Inventors: Harlan L. Curtis, Max C. Glenn, Jon B. DCamp, Lori A. Dunaway
  • Patent number: 7037805
    Abstract: A method for increasing the bonding strength between a die and a housing for the die is described where a micro-electromechanical system (MEMS) device is formed on the die. The method includes depositing a plurality of contacts of bonding material between the substrate and die, and forming a bond between the die and the housing by applying at least 25,000 kilograms of force per gram of bonding material to the housing, the contacts, and the die.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 2, 2006
    Assignee: Honeywell International Inc.
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Patent number: 6987304
    Abstract: A method for assembling a micro-electromechanical system (MEMS) device that includes a micro-machine is described. The method comprises forming the micro-machine on a die, the die having a top surface and a bottom surface, providing a plurality of die bonding pedestals on a surface of a housing, and mounting at least one of the top surface of the die and components of the micro-machine to the die bonding pedestals such that a bottom surface of the die at least partially shields components of the micro-machine from loose gettering material.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: January 17, 2006
    Assignee: Honeywell International Inc.
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Patent number: 6978673
    Abstract: A method for providing micro-electromechanical systems (MEMS) devices with multiple motor frequencies and uniform motor-sense frequency separation is described. The devices each include at least one proof mass, each proof mass being connected to a substrate by a system of suspensions. The method includes controlling the resonant frequencies of the MEMS device by adjusting at least two of a mass of the proof masses, a bending stiffness of the proof masses, a length of the suspensions, and a width of the suspensions.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: December 27, 2005
    Assignee: Honeywell International, Inc.
    Inventors: Burgess R. Johnson, Max C. Glenn, William P. Platt, David K. Arch, Mark W. Weber
  • Patent number: 6969425
    Abstract: Layers of boron-doped silicon having reduced out-of-plane curvature are disclosed. The layers have substantially equal concentrations of boron near the top and bottom surfaces. Since the opposing concentrations are substantially equal, the compressive stresses on the layers are substantially balanced, thereby resulting in layers with reduced out-of-plane curvature.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: November 29, 2005
    Assignee: Honeywell International Inc.
    Inventors: Cleopatra Cabuz, Max C. Glenn, Francis M. Erdmann, Robert D. Horning
  • Patent number: 6946200
    Abstract: Layers of boron-doped silicon having reduced out-of-plane curvature are disclosed. The layers have substantially equal concentrations of boron near the top and bottom surfaces. Since the opposing concentrations are substantially equal, the compressive stresses on the layers are substantially balanced, thereby resulting in layers with reduced out-of-plane curvature.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: September 20, 2005
    Assignee: Honeywell International Inc.
    Inventors: Cleopatra Cabuz, Max C. Glenn, Francis M. Erdmann, Robert D. Horning
  • Patent number: 6927098
    Abstract: A method for increasing the bonding strength between a die and a housing for the die is described where a micro-electromechanical system (MEMS) device is formed on the die. The method comprises depositing a plurality of clusters of contact material onto a bottom surface of the housing, placing the die onto the clusters, and subjecting the housing, the clustered contacts, and the die to a thermocompression bonding process.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: August 9, 2005
    Assignee: Honeywell International Inc.
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Patent number: 6914323
    Abstract: A method for reducing occurrences of loose gettering material particles within micro-electromechanical system (MEMS) devices is described. The MEMS devices include a micro-machine within a substantially sealed cavity formed by a housing and a cover for the housing. The cavity containing a getter mounted on a getter substrate which is to be attached to the cover. The method includes providing an area between a portion of the cover and a portion of the getter substrate, positioning the getter within the area, and attaching the getter substrate to the cover.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: July 5, 2005
    Assignee: Honeywell International Inc.
    Inventors: Harlan L. Curtis, Max C. Glenn, Jon B. DCamp, Lori A. Dunaway
  • Patent number: 6865944
    Abstract: A micro-electromechanical systems (MEMS) device is described which includes a substrate having at least one anchor, a proof mass having either of at least one deceleration extension extending from the proof mass or at least one deceleration indentation formed in the proof mass, a motor drive comb, and a motor sense comb. The MEMS device further includes a plurality of suspensions configured to suspend the proof mass over the substrate and between the motor drive comb and the motor sense comb, and the suspensions are anchored to the substrate. The MEMS device also includes a body attached to the substrate and at least one deceleration beam extending from the body. The deceleration extensions are configured to engage either deceleration beams or deceleration indentations and slow or stop the proof mass before it contacts either of the motor drive comb or the motor sense comb.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: March 15, 2005
    Assignee: Honeywell International Inc.
    Inventors: Max C. Glenn, Mark W. Weber, William P. Platt
  • Publication number: 20040232455
    Abstract: A method for increasing the bonding strength between a die and a housing for the die is described where a micro-electromechanical system (MEMS) device is formed on the die. The method includes depositing a plurality of contacts of bonding material between the substrate and die, and forming a bond between the die and the housing by applying at least 25,000 kilograms of force per gram of bonding material to the housing, the contacts, and the die.
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn
  • Publication number: 20040222468
    Abstract: A method for assembling a micro-electromechanical system (MEMS) device that includes a micro-machine is described. The method comprises forming the micro-machine on a die, the die having a top surface and a bottom surface, providing a plurality of die bonding pedestals on a surface of a housing, and mounting at least one of the top surface of the die and components of the micro-machine to the die bonding pedestals such that a bottom surface of the die at least partially shields components of the micro-machine from loose gettering material.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Jon B. DCamp, Harlan L. Curtis, Lori A. Dunaway, Max C. Glenn