Patents by Inventor Max G. Lagally

Max G. Lagally has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864465
    Abstract: Piezoelectrically actuated devices constructed from thin semiconductor membranes bonded directly to piezoelectric substrates are provided. Methods for fabricating these devices are also provided. The bonding of the semiconductor to the piezoelectric material does not require the use of any intermediate layers, such as bonding agents.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 2, 2024
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Abhishek Bhat, Frank Steele Flack, Shelley Ann Scott, Robert H. Blick
  • Patent number: 11711984
    Abstract: Josephson junctions (JJ) based on bilayers of azimuthally misaligned two-dimensional materials having superconducting states are provided. Also provided are electronic devices and circuits incorporating the JJs as active components and methods of using the electronic devices and circuits. The JJs are formed from bilayers composed of azimuthally misaligned two-dimensional materials having a first superconducting segment and a second superconducting segment separated by a weak-link region that is integrated into the bilayer.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 25, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Robert H. Blick
  • Patent number: 11588456
    Abstract: Traveling-wave tube amplifiers and methods for making slow-wave structures for the amplifiers are provided. The SWSs include helical conductors that are self-assembled via the release of stressed electrically conductive strips from a sacrificial material. The helical conductors can be electroplated post-self-assembly to fortify the helix, reduce losses, and tailor the dimensions and operating parameters of the helix.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: February 21, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Daniel Warren van der Weide, Abhishek Bhat, Francesca Cavallo, Divya Jyoti Prakash
  • Publication number: 20220044904
    Abstract: Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Francesca Cavallo, Daniel Warren van der Weide, Abhishek Bhat
  • Publication number: 20220005998
    Abstract: Josephson junctions (JJ) based on bilayers of azimuthally misaligned two-dimensional materials having superconducting states are provided. Also provided are electronic devices and circuits incorporating the JJs as active components and methods of using the electronic devices and circuits. The JJs are formed from bilayers composed of azimuthally misaligned two-dimensional materials having a first superconducting segment and a second superconducting segment separated by a weak-link region that is integrated into the bilayer.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 6, 2022
    Inventors: Max G. Lagally, Robert H. Blick
  • Patent number: 11201028
    Abstract: Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: December 14, 2021
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of New Mexico
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Francesca Cavallo, Daniel Warren van der Weide, Abhishek Bhat
  • Publication number: 20210367573
    Abstract: Traveling-wave tube amplifiers and methods for making slow-wave structures for the amplifiers are provided. The SWSs include helical conductors that are self-assembled via the release of stressed electrically conductive strips from a sacrificial material. The helical conductors can be electroplated post-self-assembly to fortify the helix, reduce losses, and tailor the dimensions and operating parameters of the helix.
    Type: Application
    Filed: May 25, 2020
    Publication date: November 25, 2021
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Daniel Warren van der Weide, Abhishek Bhat, Francesca Cavallo, Divya Jyoti Prakash
  • Publication number: 20210367138
    Abstract: Piezoelectrically actuated devices constructed from thin semiconductor membranes bonded directly to piezoelectric substrates are provided. Methods for fabricating these devices are also provided. The bonding of the semiconductor to the piezoelectric material does not require the use of any intermediate layers, such as bonding agents.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Max G. Lagally, Abhishek Bhat, Frank Steele Flack, Shelley Ann Scott, Robert H. Blick
  • Publication number: 20210202240
    Abstract: Methods for fabricating thin, high-aspect-ratio Ge nanostructures from high-quality, single-crystalline Ge substrates are provided. Also provided are grating structures made using the methods. The methods utilize a thin layer of graphene between a surface of a Ge substrate, and an overlying resist layer. The graphene passivates the surface, preventing the formation of water-soluble native Ge oxides that can result in the lift-off of the resist during the development of the resist.
    Type: Application
    Filed: December 28, 2020
    Publication date: July 1, 2021
    Inventors: Max G. Lagally, Francesca Cavallo, Vijay Saradhi Mangu
  • Publication number: 20210099142
    Abstract: Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Francesca Cavallo, Daniel Warren van der Weide, Abhishek Bhat
  • Patent number: 10930490
    Abstract: Methods for fabricating thin, high-aspect-ratio Ge nanostructures from high-quality, single-crystalline Ge substrates are provided. Also provided are grating structures made using the methods. The methods utilize a thin layer of graphene between a surface of a Ge substrate, and an overlying resist layer. The graphene passivates the surface, preventing the formation of water-soluble native Ge oxides that can result in the lift-off of the resist during the development of the resist.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: February 23, 2021
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of New Mexico
    Inventors: Max G. Lagally, Francesca Cavallo, Vijay Saradhi Mangu
  • Publication number: 20190013200
    Abstract: High-quality, single-crystalline silicon-germanium (Si(1-x)Gex) having a high germanium content is provided. Layers of the high-quality, single-crystalline silicon-germanium can be grown to high sub-critical thicknesses and then released from their growth substrates to provide Si(1-x)Gex films without lattice mismatch-induced misfit dislocations or a mosaic distribution of crystallographic orientations.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Max G. Lagally, Thomas Francis Kuech, Yingxin Guan, Shelley A. Scott, Abhishek Bhat, Xiaorui Cui
  • Patent number: 10176991
    Abstract: High-quality, single-crystalline silicon-germanium (Si(1-x)Gex) having a high germanium content is provided. Layers of the high-quality, single-crystalline silicon-germanium can be grown to high sub-critical thicknesses and then released from their growth substrates to provide Si(1-x)Gex films without lattice mismatch-induced misfit dislocations or a mosaic distribution of crystallographic orientations.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 8, 2019
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Max G. Lagally, Thomas Francis Kuech, Yingxin Guan, Shelley A. Scott, Abhishek Bhat, Xiaorui Cui
  • Patent number: 9472535
    Abstract: Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 18, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, José Roberto Sänchez Pérez
  • Patent number: 9324804
    Abstract: Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 26, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Francesca Cavallo, Richard Rojas-Delgado
  • Patent number: 9181092
    Abstract: The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or “nanomembranes.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: November 10, 2015
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Max G. Lagally, Paul G. Evans, Clark S. Ritz
  • Publication number: 20150270350
    Abstract: Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Inventors: Max G. Lagally, Francesca Cavallo, Richard Rojas-Delgado
  • Patent number: 9059335
    Abstract: Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 16, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Francesca Cavallo, Max G. Lagally, Richard Rojas-Delgado
  • Publication number: 20150129911
    Abstract: Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, José Roberto Sánchez Pérez
  • Patent number: 9006785
    Abstract: Semiconductor trilayer structures that are doped and strained are provided. Also provided are mechanically flexible transistors, including radiofrequency transistors, incorporating the trilayer structures and methods for fabricating the trilayer structures and transistors. The trilayer structures comprise a first layer of single-crystalline semiconductor material, a second layer of single-crystalline semiconductor material and a third layer of single-crystalline semiconductor material. In the structures, the second layer is in contact with and sandwiched between the first and third layers and the first layer is selectively doped to provide one or more doped regions in the layer.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: April 14, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Jung-Hun Seo, Max G. Lagally