Patents by Inventor Max L. LIFSON

Max L. LIFSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666701
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: May 30, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Publication number: 20170117206
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 9607929
    Abstract: A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: March 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Yoba Amoah, Jeffrey P. Gambino, Christine A. Leggett, Max L. Lifson, Charles F. Musante, Sruthi Samala, David C. Thomas
  • Patent number: 9601606
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9508578
    Abstract: An apparatus and method for leak detection of coolant gas from a chuck. The apparatus includes a chuck having a top surface and configured to clamp a substrate to the top surface, the chuck having one or more recessed regions in the top surface, the recessed regions configured to allow a cooling gas to contact a backside of the substrate; a cooling gas inlet and a cooling gas outlet connected to the one or more recessed regions; a first measurement device connected to the cooling gas inlet and configured to measure a first amount of cooling gas entering the cooling gas inlet and a second measurement device connected to the cooling gas outlet and configured to measure a second amount of cooling gas exiting from the cooling gas outlet; and a controller configured to determine a difference between the first amount of cooling gas and the second amount of cooling gas.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Max G. Levy, Max L. Lifson, Jed H. Rankin, Timothy D. Sullivan
  • Publication number: 20160204048
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 14, 2016
    Inventors: ALAN B. BOTULA, MAX L. LIFSON, JAMES A. SLINKMAN, THEODORE G. VAN KESSEL, RANDY L. WOLF
  • Publication number: 20160204233
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 14, 2016
    Inventors: ALAN B. BOTULA, MAX L. LIFSON, JAMES A. SLINKMAN, THEODORE G. VAN KESSEL, RANDY L. WOLF
  • Publication number: 20160126158
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: January 8, 2016
    Publication date: May 5, 2016
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 9324628
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9312205
    Abstract: A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Yoba Amoah, Jeffrey P. Gambino, Christine A. Leggett, Max L. Lifson, Charles F. Musante, Sruthi Samala, David C. Thomas
  • Patent number: 9275868
    Abstract: Substrates (wafers) with uniform backside roughness and methods of manufacture are disclosed. The method includes forming a material on a backside of a wafer. The method further includes patterning the material to expose portions of the backside of the wafer. The method further includes roughening the backside of the wafer through the patterned material to form a uniform roughness.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 1, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shawn A. Adderly, Jeffrey P. Gambino, Max L. Lifson, Matthew D. Moon, William J. Murphy, Timothy D. Sullivan, David C. Thomas
  • Publication number: 20150348876
    Abstract: A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 3, 2015
    Inventors: James W. Adkisson, Yoba Amoah, Jeffrey P. Gambino, Christine A. Leggett, Max L. Lifson, Charles F. Musante, Sruthi Samala, David C. Thomas
  • Publication number: 20150255404
    Abstract: A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 10, 2015
    Applicant: International Business Machines Corporation
    Inventors: James W. Adkisson, Yoba Amoah, Jeffrey P. Gambino, Christine A. Leggett, Max L. Lifson, Charles F. Musante, Sruthi Samala, David C. Thomas
  • Publication number: 20150243578
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Publication number: 20150235881
    Abstract: An apparatus and method for centering substrates determining on a chuck. The apparatus includes a chuck in a process chamber, the chuck configured to removeably hold a substrate for processing; an array of two or more ultrasonic sensors arranged in the process chamber, each ultrasonic sensor arranged relative to the chuck so as to send a respective ultrasonic sound wave to a respective preselected region of the substrate and receive a respective return ultrasonic sound wave from the preselected region of the substrate; and a controller connected to each ultrasonic sensor and configured to compare a measured position of the substrate on the chuck to a specified placement of the substrate on the chuck based on a measured elapsed time between sending the ultrasonic sound wave and receiving the return ultrasonic sound wave from each ultrasonic sensor.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Max G. Levy, Max L. Lifson, Matthew D. Moon, Timothy D. Sullivan
  • Publication number: 20150219479
    Abstract: An apparatus and method for leak detection of coolant gas from a chuck. The apparatus includes a chuck having a top surface and configured to clamp a substrate to the top surface, the chuck having one or more recessed regions in the top surface, the recessed regions configured to allow a cooling gas to contact a backside of the substrate; a cooling gas inlet and a cooling gas outlet connected to the one or more recessed regions; a first measurement device connected to the cooling gas inlet and configured to measure a first amount of cooling gas entering the cooling gas inlet and a second measurement device connected to the cooling gas outlet and configured to measure a second amount of cooling gas exiting from the cooling gas outlet; and a controller configured to determine a difference between the first amount of cooling gas and the second amount of cooling gas.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 6, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Max G. Levy, Max L. Lifson, Jed H. Rankin, Timothy D. Sullivan
  • Publication number: 20150021743
    Abstract: Substrates (wafers) with uniform backside roughness and methods of manufacture are disclosed. The method includes forming a material on a backside of a wafer. The method further includes patterning the material to expose portions of the backside of the wafer. The method further includes roughening the backside of the wafer through the patterned material to form a uniform roughness.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Inventors: Shawn A. ADDERLY, Jeffrey P. GAMBINO, Max L. LIFSON, Matthew D. MOON, William J. MURPHY, Timothy D. SULLIVAN, David C. THOMAS