Patents by Inventor Max P. McDaniel

Max P. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12275679
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: May 9, 2024
    Date of Patent: April 15, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 12269911
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain an alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: April 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Patent number: 12246312
    Abstract: Disclosed herein are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with an inorganic base to form an aqueous mixture having a pH of at least 4, followed by contacting a solid oxide with the aqueous mixture to produce the fluorided solid oxide. Also disclosed are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with a solid oxide to produce a mixture, followed by contacting the mixture with a inorganic base to produce the fluorided solid oxide at a pH of at least about 4. The fluorided solid oxide can be used as an activator component in a catalyst system for the polymerization of olefins.
    Type: Grant
    Filed: April 18, 2024
    Date of Patent: March 11, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Qing Yang, Tony R. Crain
  • Patent number: 12240933
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Grant
    Filed: February 23, 2024
    Date of Patent: March 4, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Patent number: 12240964
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ??/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.
    Type: Grant
    Filed: May 14, 2024
    Date of Patent: March 4, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
  • Publication number: 20250043037
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to 0.37 g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Application
    Filed: October 17, 2024
    Publication date: February 6, 2025
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A. Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20250034456
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Application
    Filed: October 16, 2024
    Publication date: January 30, 2025
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Patent number: 12202914
    Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: January 21, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
  • Publication number: 20250011481
    Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.
    Type: Application
    Filed: September 12, 2024
    Publication date: January 9, 2025
    Inventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr
  • Publication number: 20250002434
    Abstract: Processes for converting methane into methanol are disclosed in which methane, water, and a supported chromium (VI) catalyst are contacted with a light beam at a wavelength in the UV-visible spectrum in an oxidizing atmosphere in a single reactor to form a reaction product comprising methanol, followed by discharging a reactor effluent containing the reaction product from the single reactor, and then separating methanol from the reaction product. Processes to produce methanol using additional reactors also are described, as well as related methanol production systems.
    Type: Application
    Filed: September 10, 2024
    Publication date: January 2, 2025
    Inventors: Jamie N. Sutherland, James Hillier, Gregory G. Hendrickson, Max P. McDaniel
  • Patent number: 12161997
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: November 29, 2023
    Date of Patent: December 10, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20240399342
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Application
    Filed: August 12, 2024
    Publication date: December 5, 2024
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Patent number: 12157109
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: December 3, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Patent number: 12152199
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Grant
    Filed: February 6, 2024
    Date of Patent: November 26, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Patent number: 12146018
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to 0.37 g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Grant
    Filed: January 18, 2024
    Date of Patent: November 19, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20240376385
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Application
    Filed: February 6, 2024
    Publication date: November 14, 2024
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Publication number: 20240376232
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain a bound alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared L. Barr, Andrew T. Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Publication number: 20240367155
    Abstract: Processes for producing activated chromium catalysts such as titanated chromium/silica catalysts are disclosed, and these processes utilize a multistep process involving exposure to inert and oxidizing atmospheres at specific temperature conditions. The resulting activated chromium catalysts have unexpectedly high melt index potential and can produce ethylene-based polymers with lower gel counts in addition to higher melt indices.
    Type: Application
    Filed: April 30, 2024
    Publication date: November 7, 2024
    Inventors: Max P. McDaniel, Zhihui Gu, Ted H. Cymbaluk, Anand Ramanathan, Julian Abrego, Taryn L. Huber, David W. Dockter
  • Patent number: 12134591
    Abstract: Processes for converting methane into methanol are disclosed in which methane, water, and a supported chromium (VI) catalyst are contacted with a light beam at a wavelength in the UV-visible spectrum in an oxidizing atmosphere in a single reactor to form a reaction product comprising methanol, followed by discharging a reactor effluent containing the reaction product from the single reactor, and then separating methanol from the reaction product. Processes to produce methanol using additional reactors also are described, as well as related methanol production systems.
    Type: Grant
    Filed: October 26, 2023
    Date of Patent: November 5, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jamie N. Sutherland, James Hillier, Gregory G. Hendrickson, Max P. McDaniel
  • Patent number: 12122857
    Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: October 22, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr