Patents by Inventor Max P. McDaniel

Max P. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250243298
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain an alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Application
    Filed: March 4, 2025
    Publication date: July 31, 2025
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Patent number: 12370536
    Abstract: Methods for modifying a catalyst system component are disclosed in which a feed mixture containing a fluid and from 1 to 15 wt. % of a catalyst system component is introduced into an inlet of a hydrocyclone, an overflow stream containing from 0.1 to 5 wt. % solids and an underflow stream containing from 10 to 40 wt. % solids are discharged from the hydrocyclone, and the underflow stream is spray dried to form a modified catalyst component. Often, from 4 to 20 wt. % of the catalyst system component in the feed mixture has a particle size of less than or equal to 20 ?m, or less than or equal to 10 ?m.
    Type: Grant
    Filed: May 10, 2024
    Date of Patent: July 29, 2025
    Assignees: Chevron Phillips Chemical Company LP, The Shepherd Chemical Company
    Inventors: Mark Scott, Evan Merk, Max P. McDaniel
  • Publication number: 20250236687
    Abstract: Supported chromium (VI) catalysts containing a solid oxide, 0.05 to 5 wt. % chromium, and 0.2 to 20 wt. % carbon, in which the solid oxide or the catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a fluidized bed reactor or other suitable polymerization reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 0.5 to 3 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m (in diameter) per five grams of the ethylene polymer.
    Type: Application
    Filed: October 14, 2024
    Publication date: July 24, 2025
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeffrey S. Lowell, Scott E. Kufeld
  • Patent number: 12365746
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain a bound alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Grant
    Filed: July 23, 2024
    Date of Patent: July 22, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared L. Barr, Andrew T. Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Patent number: 12351670
    Abstract: Sulfated bentonite compositions are characterized by a total pore volume from 0.4 to 1 mL/g, a total BET surface area from 200 to 400 m2/g, and an average pore diameter from 55 to 100 Angstroms. The sulfated bentonite compositions also can be characterized by a d50 average particle size in a range from 15 to 50 ?m and a ratio of d90/d10 from 3 to 15. The sulfated bentonite compositions can contain a sulfated bentonite and from 10 to 90 wt. % of colloidal particles, or the sulfated bentonite compositions can contain a sulfated bentonite and from 0.2 to 10 mmol/g of zinc and/or phosphorus. These compositions can be utilized in metallocene catalyst systems to produce ethylene based polymers.
    Type: Grant
    Filed: April 29, 2024
    Date of Patent: July 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Ryan N. Rose, Kathy S. Clear, Graham R. Lief, Eric D. Schwerdtfeger, Anand Ramanathan, Jeremy M. Praetorius, Connor D. Boxell
  • Patent number: 12351657
    Abstract: Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.
    Type: Grant
    Filed: September 12, 2024
    Date of Patent: July 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Graham R. Lief, Qing Yang, Carlos A. Cruz, Yongwoo Inn, Jared Barr
  • Patent number: 12350650
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Grant
    Filed: August 12, 2024
    Date of Patent: July 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Patent number: 12351545
    Abstract: Processes for converting methane into methanol are disclosed in which methane, water, and a supported chromium (VI) catalyst are contacted with a light beam at a wavelength in the UV-visible spectrum in an oxidizing atmosphere in a single reactor to form a reaction product comprising methanol, followed by discharging a reactor effluent containing the reaction product from the single reactor, and then separating methanol from the reaction product. Processes to produce methanol using additional reactors also are described, as well as related methanol production systems.
    Type: Grant
    Filed: September 10, 2024
    Date of Patent: July 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jamie N. Sutherland, James Hillier, Gregory G. Hendrickson, Max P. McDaniel
  • Patent number: 12325829
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Grant
    Filed: October 16, 2024
    Date of Patent: June 10, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear
  • Publication number: 20250177966
    Abstract: Disclosed herein are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with an inorganic base to form an aqueous mixture having a pH of at least 4, followed by contacting a solid oxide with the aqueous mixture to produce the fluorided solid oxide. Also disclosed are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with a solid oxide to produce a mixture, followed by contacting the mixture with a inorganic base to produce the fluorided solid oxide at a pH of at least about 4. The fluorided solid oxide can be used as an activator component in a catalyst system for the polymerization of olefins.
    Type: Application
    Filed: February 11, 2025
    Publication date: June 5, 2025
    Inventors: Max P. McDaniel, Kathy S. Clear, Qing Yang, Tony R. Crain
  • Patent number: 12319774
    Abstract: Supported chromium (VI) catalysts containing a solid oxide, 0.05 to 5 wt. % chromium, and 0.2 to 20 wt. % carbon, in which the solid oxide or the catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a fluidized bed reactor or other suitable polymerization reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 0.5 to 3 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m (in diameter) per five grams of the ethylene polymer.
    Type: Grant
    Filed: May 2, 2024
    Date of Patent: June 3, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeffrey S. Lowell, Scott E. Kufeld
  • Patent number: 12319770
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to 0.37 g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Grant
    Filed: October 17, 2024
    Date of Patent: June 3, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20250154298
    Abstract: Processes for producing activated chromium catalysts such as chromium/silica catalysts and titanated chromium/silica catalysts are disclosed, and these processes utilize a multistep process involving exposure to inert and oxidizing atmospheres at specific temperature conditions. The resulting activated chromium catalysts have unexpectedly high melt index potential and can produce ethylene-based polymers with lower gel counts in addition to higher melt indices. Related activation systems are provided in which the fluidizing gas entering the fluidized bed vessel can be adjusted between an inert gas, an oxygen-containing gas, or a mixture of the inert gas and the oxygen-containing gas to minimize or prevent exotherms.
    Type: Application
    Filed: November 7, 2024
    Publication date: May 15, 2025
    Inventors: Max P. McDaniel, Zhihui Gu, Ted H. Cymbaluk, Anand Ramanathan, Julian Abrego, Taryn Huber, Ravindranath Koyyalagunta, Marlon L. Jordan, David W. Dockter
  • Patent number: 12275679
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Grant
    Filed: May 9, 2024
    Date of Patent: April 15, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel, William C. Ellis
  • Patent number: 12269911
    Abstract: Methods for making titanated silica supports, titanated chromium/silica pre-catalysts, and activated titanated chromium/silica catalysts are disclosed in which hydrogen peroxide and an alkali metal precursor are used during catalyst preparation. Resulting titanated chromium/silica pre-catalysts often contain silica, 0.1 to 5 wt. % chromium, 0.1 to 10 wt. % titanium, and less than or equal to 4 wt. % carbon, and further contain an alkali metal or zinc at a molar ratio of alkali metal:titanium or zinc:titanium from 0.02:1 to 3:1 and/or at an amount in a range from 0.01 to 2 mmol of alkali metal or zinc per gram of the silica. High melt index potential activated titanated chromium/silica catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers having HLMI values of greater than 30 g/10 min.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: April 8, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Anand Ramanathan, Max P. McDaniel, Jared Barr, Andrew Blagg, Christopher E. Wittner, Alan L. Solenberger, Zachary T. Kilpatrick, Micheal P. Stevens
  • Patent number: 12246312
    Abstract: Disclosed herein are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with an inorganic base to form an aqueous mixture having a pH of at least 4, followed by contacting a solid oxide with the aqueous mixture to produce the fluorided solid oxide. Also disclosed are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with a solid oxide to produce a mixture, followed by contacting the mixture with a inorganic base to produce the fluorided solid oxide at a pH of at least about 4. The fluorided solid oxide can be used as an activator component in a catalyst system for the polymerization of olefins.
    Type: Grant
    Filed: April 18, 2024
    Date of Patent: March 11, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Qing Yang, Tony R. Crain
  • Patent number: 12240964
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ??/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.
    Type: Grant
    Filed: May 14, 2024
    Date of Patent: March 4, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
  • Patent number: 12240933
    Abstract: Methods for preparing a metallocene-based catalyst composition that can impact the long chain branching of ethylene homopolymers and copolymers produced using the catalyst composition are described. The catalyst composition can be prepared by contacting a metallocene compound, a hydrocarbon solvent, and a first organoaluminum compound for a first period of time to form a metallocene solution, and then contacting the metallocene solution with an activator-support and a second organoaluminum compound for a second period of time to form the catalyst composition.
    Type: Grant
    Filed: February 23, 2024
    Date of Patent: March 4, 2025
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain
  • Publication number: 20250043037
    Abstract: Fluorided silica-coated alumina activator-supports have a bulk density from 0.15 to 0.37 g/mL, a total pore volume from 0.85 to 2 mL/g, a BET surface area from 200 to 500 m2/g, an average pore diameter from 10 to 25 nm, and from 80 to 99% of pore volume in pores with diameters of greater than 6 nm. Methods of making the fluorided silica-coated alumina activator-supports and using the fluorided silica-coated aluminas in catalyst compositions and olefin polymerization processes also are described. Representative ethylene-based polymers produced using the compositions and processes have a melt index of 0.1 to 10 g/10 min and a density of 0.91 to 0.96 g/cm3, and contain from 70 to 270 ppm solid oxide and from 2 to 18 ppm fluorine.
    Type: Application
    Filed: October 17, 2024
    Publication date: February 6, 2025
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Qing Yang, Carlos A. Cruz, Jinping J. Zhou, Anand Ramanathan, Kathy S. Clear, Zhihui Gu
  • Publication number: 20250034456
    Abstract: Pyrolysis processes comprise contacting a waste polyolefin with a solid catalyst at a pyrolysis temperature to form a pyrolysis product containing C1-C10 hydrocarbons. In some instances, the solid catalyst can be a silica-coated alumina, a fluorided silica-coated alumina, or a sulfated alumina, while in other instances, the solid catalyst can be any suitable solid oxide or chemically-treated solid oxide that is characterized by a d50 average particle size from 5 to 12 ?m and a particle size span from 0.7 to 1.7. Hydrocarbon compositions are formed from the pyrolysis of waste polyolefins with specific amounts of methane and higher carbon number hydrocarbons.
    Type: Application
    Filed: October 16, 2024
    Publication date: January 30, 2025
    Inventors: David W. Dockter, Max P. McDaniel, Kathy S. Clear