Patents by Inventor Max P. McDaniel

Max P. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11384175
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: July 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand
  • Patent number: 11384179
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: July 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11376575
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 5, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Publication number: 20220203333
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Inventors: Jeremy M. PRAETORIUS, Eric D. SCHWERDTFEGER, Max P. MCDANIEL, Ted H. CYMBALUK, Connor D. BOXELL, Alan L. SOLENBERGER, Kathy S. CLEAR
  • Patent number: 11369947
    Abstract: Methods for making a supported chromium catalyst are disclosed, and can comprise contacting a silica-coated alumina containing at least 30 wt. % silica with a chromium-containing compound in a liquid, drying, and calcining in an oxidizing atmosphere at a peak temperature of at least 650° C. to form the supported chromium catalyst. The supported chromium catalyst can contain from 0.01 to 20 wt. % chromium, and typically can have a pore volume from 0.5 to 2 mL/g and a BET surface area from 275 to 550 m2/g. The supported chromium catalyst subsequently can be used to polymerize olefins to produce, for example, ethylene-based homopolymers and copolymers having high molecular weights and broad molecular weight distributions.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 28, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear
  • Patent number: 11358132
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11358131
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20220177619
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11345649
    Abstract: Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 31, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Kathy S. Clear, Max P. McDaniel
  • Patent number: 11338278
    Abstract: Catalyst preparation systems and methods for preparing reduced chromium catalysts are disclosed, and can comprise irradiating a supported chromium catalyst containing hexavalent chromium with a light beam having a wavelength within the UV-visible light spectrum. Such reduced chromium catalysts have improved catalytic activity compared to chromium catalysts reduced by other means. The use of the reduced chromium catalyst in polymerization reactor systems and olefin polymerization processes also is disclosed, resulting in polymers with a higher melt index.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: May 24, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kathy S. Clear, Max P. McDaniel, William C. Ellis, Eric D. Schwerdtfeger, Deloris R. Gagan, Carlos A. Cruz, Masud M. Monwar
  • Patent number: 11339279
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ?E/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: May 24, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
  • Publication number: 20220153887
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Publication number: 20220152586
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11331650
    Abstract: A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: May 17, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Eric D. Schwerdtfeger, Max P. McDaniel, Ted H. Cymbaluk, Connor D. Boxell, Alan L. Solenberger, Kathy S. Clear
  • Publication number: 20220144985
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Application
    Filed: July 8, 2021
    Publication date: May 12, 2022
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Publication number: 20220144982
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica-chromium nanoparticle agglomerates, wherein each titanium-silica-chromium nanoparticle agglomerate is an agglomeration of titanium-silica-chromium nanoparticles, the agglomerates having an average titanium penetration depth designated x with a coefficient of variation for the average titanium penetration depth of less than about 1.0 wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 12, 2022
    Inventors: Max P. MCDANIEL, Eric D. SCHWERDTFEGER, Jeremy M. PRAETORIUS
  • Patent number: 11326005
    Abstract: Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 ?m and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11325997
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
  • Patent number: 11326003
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11325996
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. Also disclosed are olefin polymerization catalysts and pre-catalyst compositions thereof and methods of preparing olefin polymerization catalysts and pre-catalyst compositions thereof.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan