Patents by Inventor Max P. McDaniel

Max P. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11325996
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. Also disclosed are olefin polymerization catalysts and pre-catalyst compositions thereof and methods of preparing olefin polymerization catalysts and pre-catalyst compositions thereof.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 10, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Publication number: 20220135708
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof, and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Max P. MCDANIEL, Kathy S. CLEAR, William C. ELLIS, Deloris R. GAGAN
  • Publication number: 20220134311
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11298683
    Abstract: Methods for synthesizing a water-soluble titanium-silicon complex are disclosed herein. The titanium-silicon complex can be utilized to produce titanated solid oxide supports and titanated chromium supported catalysts. The titanated chromium supported catalysts subsequently can be used to polymerize olefins to produce, for example, ethylene based homopolymer and copolymers.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11300501
    Abstract: Methods for determining the catalytic activity of an activated chemically-treated solid oxide using a color measurement technique are described, and these methods are integrated into transition metal-based catalyst preparation processes and systems, as well as into olefin polymerization processes and related polymerization reactor systems.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: April 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Richard M. Buck, Tony R. Crain, Ryan N. Rose
  • Patent number: 11299562
    Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: April 12, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Kathy S. Clear, Tony R. Crain, Timothy O. Odi
  • Publication number: 20220089794
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20220081370
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and a supported transition metal catalyst—containing molybdenum, tungsten, or vanadium—are irradiated with a light beam at a wavelength in the UV-visible spectrum, optionally in an oxidizing atmosphere, to form a reduced transition metal catalyst, followed by hydrolyzing the reduced transition metal catalyst to form a reaction product containing the alcohol compound and/or the carbonyl compound.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 17, 2022
    Inventors: Masud M. Monwar, Jared L. Barr, Carlos A. Cruz, Kathy S. Clear, Max P. McDaniel
  • Patent number: 11267914
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica-chromium nanoparticle agglomerates, wherein each titanium-silica-chromium nanoparticle agglomerate is an agglomeration of titanium-silica-chromium nanoparticles, the agglomerates having an average titanium penetration depth designated x with a coefficient of variation for the average titanium penetration depth of less than about 1.0 wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11267908
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a solvent; a ligand comprising a glycol, a carboxylate, a peroxide, or a combination thereof; and a titanium compound having the formula Ti(acac)2(OR)2, wherein “acac” is acetylacetonate and wherein each R independently is ethyl, isopropyl, n-propyl, isobutyl, or n-butyl.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11266976
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20220056173
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica nanoparticle agglomerates, wherein each titanium-silica nanoparticle agglomerate is an agglomeration of titanium-silica nanoparticles, the agglomerates having an average titanium loading designated x with a coefficient of variation for the average titanium loading of less than about 1.0, wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Application
    Filed: November 3, 2021
    Publication date: February 24, 2022
    Inventors: Max P. MCDANIEL, Eric D. SCHWERDTFEGER, Jeremy M. PRAETORIUS
  • Patent number: 11242418
    Abstract: A pre-catalyst composition comprising: a) a silica support comprising silica wherein an amount of silica is in a range of from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support; b) a titanium-containing compound wherein an amount of titanium is in a range of from about 0.1 wt. % to about 20 wt. % based upon a total weight of the silica within the pre-catalyst composition; c) a chromium-containing compound wherein an amount of chromium is in a range of from about 0.01 wt. % to about 10 wt. % based upon a total weight of the silica within the pre-catalyst composition; d) a surfactant wherein the surfactant comprises a non-ionic surfactant, a cationic surfactant, or a combination thereof; e) a carboxylate wherein the carboxylate comprises a multi carboxylate, an alpha-hydroxy carboxylate, or a combination thereof; and f) a solvent.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242417
    Abstract: A method for an olefin polymerization catalyst comprises contacting a silica support or a chromium-silica support with titanium to produce a Cr/Si—Ti catalyst. A titanium-containing solution is used to facilitate the association of titanium with the support, wherein the titanium-containing solution is formed by contacting a solvent, an amino acid, optionally a peroxide, optionally a carboxylate and a titanium-containing compound. A method for preparation of an olefin polymerization catalyst comprises contacting a chromium-silica support with the titanium-containing solution under conditions suitable to form a pre-catalyst composition and further processing the pre-catalyst composition to produce a Cr/Si—Ti catalyst.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Patent number: 11242416
    Abstract: A method comprising contacting a silica support with a titanium-containing solution to form a titanated silica support, wherein the titanium-containing solution comprises a titanium compound, a solvent, and an amino acid. The method further comprising drying the titanated silica support to form a pre-catalyst composition; contacting a chromium-containing compound with the silica support, the titanated silica support, the pre-catalyst composition, or combinations thereof; and calcining the pre-catalyst composition to form an olefin polymerization catalyst.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan
  • Publication number: 20220033332
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared L. Barr, Kathy S. Clear, William C. Ellis
  • Publication number: 20220017661
    Abstract: Processes for activating chromium polymerization catalysts, which can use lower maximum activation temperatures and shorter activation times than conventional activation methods, and provide polyethylenes with high melt indices, broader molecular weight distributions, and lower long chain branching content. The activation process can comprise heating a supported chromium catalyst in an inert atmosphere to a first temperature (T1) for a first hold time (tH1), followed by allowing the chromium catalyst to attain a second temperature (T2) in the inert atmosphere, then contacting the chromium catalyst with an oxidative atmosphere for a second hold time (tH2), in which T2 can be less than or equal to T1. Additional activation treatments and conditioning steps are disclosed which can be used to enhance the melt index potential of Phillips (Cr/silica) catalysts.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 20, 2022
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, William C. Ellis, Deloris R. Gagan, Ted H. Cymbaluk
  • Publication number: 20220017668
    Abstract: Polymerization processes for producing ethylene-based plastomers and elastomers having densities less than 0.91 g/cm3 utilize a metallocene-based catalyst system containing a chemically-treated solid oxide. These polymerization processes can be conducted in a slurry reactor, a solution reactor, and/or a gas phase reactor. Ethylene polymers produced from the polymerization process can be characterized by a density of less than 0.91 g/cm3, a CY-a parameter of less than 0.2, and a ratio of HLMI/MI of at least 30, or a density less than 0.91 g/cm3, a CY-a parameter from 0.25 to 0.75, and a ratio of Mw/Mn from 2 to 3.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 20, 2022
    Inventors: Scott E. Kufeld, Max P. McDaniel, Kenneth A. Dooley
  • Patent number: 11220564
    Abstract: A method of preparing a catalyst comprising a) contacting a non-aqueous solvent, a carboxylic acid, and a chromium-containing compound to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst. A method of preparing a catalyst comprising a) contacting a non-aqueous solvent and a carboxylic acid to form an acidic mixture; b) contacting a titanium-containing compound with the acidic mixture to form a titanium treatment solution; c) contacting a pre-formed chrominated silica-support comprising from about 0.1 wt. % to about 20 wt. % water with the titanium treatment solution to form a pre-catalyst; and d) thermally treating the pre-catalyst to form the catalyst.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: January 11, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20220002449
    Abstract: Silica composites and supported chromium catalysts having a bulk density of 0.08 to 0.4 g/mL, a total pore volume of 0.4 to 2.5 mL/g, a BET surface area of 175 to 375 m2/g, and a peak pore diameter of 10 to 80 nm are disclosed herein. These silica composites and supported chromium catalysts can be formed by combining two silica components. The first silica component can be irregularly shaped, such as fumed silica, and the second silica component can be a colloidal silica or a silicon-containing compound, and the second silica component can act as a glue to bind the silica composite together.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Max P. McDaniel, Kathy S. Clear, Carlton E. Ash, Stephen L. Kelly, Amanda B. Allemand