Patents by Inventor Maxim S. Shatalov

Maxim S. Shatalov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10923619
    Abstract: A semiconductor heterostructure for an optoelectronic device is disclosed. The semiconductor heterostructure includes at least one stress control layer within a plurality of semiconductor layers used in the optoelectronic device. Each stress control layer includes stress control regions separated from adjacent stress control regions by a predetermined spacing. The stress control layer induces one of a tensile stress and a compressive stress in an adjacent semiconductor layer.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: February 16, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10923623
    Abstract: A device comprising a semiconductor layer including a plurality of compositional inhomogeneous regions is provided. The difference between an average band gap for the plurality of compositional inhomogeneous regions and an average band gap for a remaining portion of the semiconductor layer can be at least thermal energy. Additionally, a characteristic size of the plurality of compositional inhomogeneous regions can be smaller than an inverse of a dislocation density for the semiconductor layer.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 16, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Remigijus Gaska, Mikhail Gaevski
  • Patent number: 10907055
    Abstract: An approach for curing ultraviolet sensitive polymer materials (e.g., polymer inks, coatings, and adhesives) using ultraviolet radiation is disclosed. The ultraviolet sensitive polymer materials curing can utilize ultraviolet light at different wavelength emissions arranged in a random, mixed or sequential arrangement. In one embodiment, an ultraviolet light C (UV-C) radiation emitter having a set of UV-C sources that emit UV-C radiation at a predetermined UV-C duration and intensity operate in conjunction with an ultraviolet light B (UV-B) radiation emitter having a set of UV-B sources configured to emit UV-B radiation at a predetermined UV-B duration and intensity and/or an ultraviolet light A (UV-A) radiation emitter having a set of UV-A sources configured to emit UV-A radiation at a predetermined UV-A duration and intensity, to cure the ultraviolet sensitive polymer materials.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: February 2, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Timothy James Bettles, Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov
  • Publication number: 20210028326
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20210028325
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The electron blocking layer is located between the active region and the p-type contact layer. In an embodiment, the electron blocking layer can include a plurality of sublayers that vary in composition.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 10903391
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The p-type contact layer and electron blocking layer can be doped with a p-type dopant. The dopant concentration for the electron blocking layer can be at most ten percent the dopant concentration of the p-type contact layer. A method of designing such a heterostructure is also described.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 26, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 10881755
    Abstract: Ultraviolet illumination with optical elements to irradiate objects and/or fluid for purposes of sterilization, disinfection, and/or cleaning. The objects and/or fluid can be irradiated using an ultraviolet illuminator having at least one ultraviolet light emitting source. An ultraviolet transparent housing encapsulates the at least one ultraviolet light emitting source. The ultraviolet transparent housing includes an ultraviolet transparent material that emits ultraviolet light from the at least one ultraviolet light emitting source while preventing humidity from penetrating the ultraviolet transparent housing and damaging the at least one ultraviolet light emitting source. At least one ultraviolet transparent optical element is located about the ultraviolet transparent housing interspersed with the ultraviolet transparent material.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 5, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10849996
    Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 1, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska, Igor Agafonov
  • Patent number: 10854785
    Abstract: An optoelectronic device with a multi-layer contact is described. The optoelectronic device can include an n-type semiconductor layer having a surface. A mesa can be located over a first portion of the surface of the n-type semiconductor layer and have a mesa boundary. An n-type contact region can be located over a second portion of the surface of the n-type semiconductor contact layer entirely distinct from the first portion, and be at least partially defined by the mesa boundary. A first n-type metallic contact layer can be located over at least a portion of the n-type contact region in proximity of the mesa boundary, where the first n-type metallic contact layer forms an ohmic contact with the n-type semiconductor layer. A second metallic contact layer can be located over a second portion of the n-type contact region, where the second metallic contact layer is formed of a reflective metallic material.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 1, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Maxim S. Shatalov, Mikhail Gaevski, Michael Shur
  • Patent number: 10842081
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 24, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Patent number: 10804423
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The p-type contact layer and electron blocking layer can be doped with a p-type dopant. The dopant concentration for the electron blocking layer can be at most ten percent the dopant concentration of the p-type contact layer. A method of designing such a heterostructure is also described.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 13, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 10787375
    Abstract: A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 29, 2020
    Assignee: Sensor Electronics Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Igor Agafonov, Ignas Gaska, Alexander Dobrinsky, Maxim S Shatalov, Arthur Peter Barber, III
  • Patent number: 10788186
    Abstract: An approach for providing illumination with a blue UV light source, which can be used in combination with a visible light source is disclosed. In operation, the visible light source emits visible light at a first intensity. The blue UV light source emits blue UV light at a second intensity. The blue UV light stimulates fluorescence from a surface of an object illuminated by the blue UV light. A sensor can detect the intensity of the fluorescence from the surface illuminated by the blue UV light source. A control module can be operatively coupled to the visible light source, the blue UV light source, and the at least one sensor, and be configured to change the intensity of the visible light and/or the intensity of the blue UV light as a function of the fluorescent intensity detected by the sensor.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10770616
    Abstract: Fabrication of a heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can be epitaxially grown on a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 8, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10751663
    Abstract: A system for providing ultraviolet treatment of volatile organic compounds (VOCs) is disclosed. The system can include a first gas conduit to carry a stream of gas having VOCs and a second gas conduit to carry a second stream of gas containing a partial pressure of water vapor. A gas treatment unit can be coupled to the first gas conduit and the second gas conduit. The gas treatment unit can form hydroxyl radicals from the water vapor in the stream of gas carried by the second gas conduit and inject the radicals in the first gas conduit to decrease the presence of the VOCs. The gas treatment unit can include a photocatalyst component and at least one ultraviolet radiation source to irradiate the photocatalyst component with ultraviolet radiation. To this extent, the irradiated photocatalyst component disassociates the gas containing the water vapor to form the hydroxyl radicals.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: August 25, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventor: Maxim S. Shatalov
  • Patent number: 10707379
    Abstract: An optoelectronic device with a multi-layer contact is described. The optoelectronic device can include an n-type semiconductor layer having a surface. A mesa can be located over a first portion of the surface of the n-type semiconductor layer and have a mesa boundary, which has a shape including a plurality of interconnected fingers. The n-type semiconductor layer can have a shape at least partially defined by the mesa boundary. A first n-type contact layer can be located adjacent to another portion of the n-type semiconductor contact layer, where the first n-type contact layer forms an ohmic contact with the n-type semiconductor layer. A second contact layer can be located over a second portion of the n-type semiconductor contact layer, where the second contact layer is formed of a reflective material.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: July 7, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Maxim S. Shatalov, Mikhail Gaevski, Michael Shur
  • Publication number: 20200197551
    Abstract: Ultraviolet radiation is directed within an area. The storage area is scanned and monitored for the presence of biological activity within designated zones. Once biological activity is identified, ultraviolet radiation is directed to sterilize and disinfect designated zones within the storage area.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska
  • Patent number: 10688210
    Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: June 23, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Timothy James Bettles, Alexander Dobrinsky, Remigijus Gaska, Michael Shur, Robert M. Kennedy, Arthur Peter Barber, III, Carlton Gibson
  • Patent number: 10624978
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet radiation in an ultraviolet range of approximately 260 nanometers to approximately 310 nanometers to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: April 21, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Arthur Peter Barber, III, Maxim S. Shatalov
  • Patent number: 10629770
    Abstract: Semiconductor structures formed with annealing for use in the fabrication of optoelectronic devices. The semiconductor structures can include a substrate, a nucleation layer and a buffer layer. The nucleation layer and the buffer layer can be epitaxially grown and then annealed. The temperature of the annealing of the nucleation layer and the buffer layer is greater than the temperature of the epitaxial growth of the layers. The annealing reduces the dislocation density in any subsequent layers that are added to the semiconductor structures. A desorption minimizing layer epitaxially grown on the buffer layer can be used to minimize desorption during the annealing of the layer which also aids in curtailing dislocation density and cracks in the semiconductor structures.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 21, 2020
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov