Patents by Inventor Maxime Darnon

Maxime Darnon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319870
    Abstract: An apparatus, system, and method are disclosed for a photovoltaic module, the photovoltaic module comprising a plurality of photovoltaic cells, a controllable infrared protection layer, and a protection switching means. The controllable infrared protection layer is for reducing the infrared radiation absorbed by the photovoltaic module, where the controllable infrared protection layer has a first state and a second state. When the infrared protection layer is in the first state the transmission of infrared radiation to the photovoltaic cells is higher than when the infrared protection layer is in the second state. The protection switching means is for switching the controllable infrared protection layer between the first state and the second state.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 11, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Timothy J. Dalton, Maxime Darnon, Rainer Krause, Gerd Pfeiffer, Kevin Prettyman, Carl J. Radens, Brian C. Sapp
  • Patent number: 10056266
    Abstract: A method for manufacturing a resistive device, includes depositing a first electrically conductive layer on a substrate; forming an etching mask on the first conductive layer; etching the first conductive layer through the mask, such as to obtain a plurality of electrically conductive pillars separated from one another; and forming storage elements with variable electrical resistance at the tops of the electrically conductive pillars, such that each storage element is supported by one of the electrically conductive pillars, the step of forming the storage elements including the following operations depositing a first layer by non-collimated cathode sputtering at normal incidence relative to the substrate; and depositing a second layer on the first layer by cathode sputtering, the second layer including a first chemical species sputtered at an oblique incidence.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 21, 2018
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE GRENOBLE ALPES
    Inventors: Bernard Dieny, Maxime Darnon, Gabriele Navarro, Olivier Joubert
  • Publication number: 20170309497
    Abstract: A method for manufacturing a resistive device, includes depositing a first electrically conductive layer on a substrate; forming an etching mask on the first conductive layer; etching the first conductive layer through the mask, such as to obtain a plurality of electrically conductive pillars separated from one another; and forming storage elements with variable electrical resistance at the tops of the electrically conductive pillars, such that each storage element is supported by one of the electrically conductive pillars, the step of forming the storage elements including the following operations depositing a first layer by non-collimated cathode sputtering at normal incidence relative to the substrate; and depositing a second layer on the first layer by cathode sputtering, the second layer including a first chemical species sputtered at an oblique incidence.
    Type: Application
    Filed: October 15, 2015
    Publication date: October 26, 2017
    Inventors: Bernard DIENY, Maxime DARNON, Gabriele NAVARRO, Olivier JOUBERT
  • Patent number: 9123652
    Abstract: A method for producing patterns includes inclined flanks from a face of a substrate. A protective mask is formed covering at least two masked areas of the face of the substrate and defining at least one intermediate space. An inclined flank is plasma etched from each masked area, wherein the etching forms continuous passivation layer on the inclined flanks producing autolimitation of the etching when the inclined flanks join each other. The etching is carried out in a chamber and includes the introduction into the chamber of a gas additional to the plasma. The additional gas includes molecules of a chemical species participating in the formation of the passivation layer, the quantity of gas in the chamber being controlled so that the chamber contains a quantity of molecules of the species sufficient to form the passivation layer continuously.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: September 1, 2015
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CNRS-Centre National de la Recherche Scientifique
    Inventors: Olivier Desplats, Thierry Chevolleau, Maxime Darnon, Cecile Gourgon
  • Patent number: 9059249
    Abstract: An interconnect structure is provided which includes at least one patterned and cured low-k material located directly on a surface of a substrate; and at least one least one conductively filled region embedded within an interconnect pattern located within the at least one patterned and cured low-k material, wherein the at least one conductively filled region has an inflection point at a lower region of the interconnect pattern that is in proximity to an upper surface of the substrate and the interconnect region having an upper region that has substantially straight sidewalls.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maxime Darnon, Qinghuang Lin
  • Patent number: 8956886
    Abstract: In some embodiments, a method of controlling a photoresist trimming process in a semiconductor manufacturing process may include forming a photoresist layer atop a first surface of a substrate, wherein the photoresist layer comprises a lower layer having a first pattern to be etched into the first surface of the substrate, and an upper layer having a second pattern that is not etched into the first surface of the substrate; trimming the photoresist layer in a direction parallel to the first surface of the substrate; measuring a trim rate of the second pattern using an optical measuring tool during the trimming process; and correlating the trim rate of the second pattern to a trim rate of the first pattern to control the trim rate of the first pattern during the trimming process.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: February 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Samer Banna, Olivier Joubert, Lei Lian, Maxime Darnon, Nicolas Posseme, Laurent Vallier
  • Patent number: 8952539
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Satyanarayana V. Nitta, Anthony D. Lisi, Qinghuang Lin
  • Patent number: 8896120
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps of different depths are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Patent number: 8853856
    Abstract: The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Maxime Darnon, Gerald W. Gibson, Pratik P. Joshi, Qinghuang Lin
  • Publication number: 20140273297
    Abstract: In some embodiments, a method of controlling a photoresist trimming process in a semiconductor manufacturing process may include forming a photoresist layer atop a first surface of a substrate, wherein the photoresist layer comprises a lower layer having a first pattern to be etched into the first surface of the substrate, and an upper layer having a second pattern that is not etched into the first surface of the substrate; trimming the photoresist layer in a direction parallel to the first surface of the substrate; measuring a trim rate of the second pattern using an optical measuring tool during the trimming process; and correlating the trim rate of the second pattern to a trim rate of the first pattern to control the trim rate of the first pattern during the trimming process.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SAMER BANNA, OLIVIER JOUBERT, LEI LIAN, MAXIME DARNON, NICOLAS POSSEME, LAURENT VALLIER
  • Patent number: 8828749
    Abstract: The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Maxime Darnon, Gerald W. Gibson, Pratik P. Joshi, Qinghuang Lin
  • Publication number: 20140242801
    Abstract: A method for producing patterns includes inclined flanks from a face of a substrate. A protective mask is formed covering at least two masked areas of the face of the substrate and defining at least one intermediate space. An inclined flank is plasma etched from each masked area, wherein the etching forms continuous passivation layer on the inclined flanks producing autolimitation of the etching when the inclined flanks join each other. The etching is carried out in a chamber and includes the introduction into the chamber of a gas additional to the plasma. The additional gas includes molecules of a chemical species participating in the formation of the passivation layer, the quantity of gas in the chamber being controlled so that the chamber contains a quantity of molecules of the species sufficient to form the passivation layer continuously.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicants: CNRS-CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Olivier Desplats, Thierry Chevolleau, Maxime Darnon, Cecile Gourgon
  • Publication number: 20140131880
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Satyanarayana V. Nitta, Anthony D. Lisi, Qinghuang Lin
  • Patent number: 8642252
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Satyanarayana V. Nitta, Anthony D. Lisi, Qinghuang Lin
  • Patent number: 8637395
    Abstract: A single damascene or dual damascene interconnect structure fabricated with a photo-patternable low-k dielectric (PPLK) which is cured after etching. This method prevents the PPLK damage and the tapering of the edges of the interconnect structure. In one embodiment, the method of the present invention includes depositing a photo-patternable low-k (PPLK) material atop a substrate. The at least one PPLK material is patterned, creating a single damascene structure. For dual damascene structures, a second PPLK layer is coated and patterned. An etch process is performed to transfer the pattern from the PPLK material into at least a portion of the substrate. A diffusion liner and a conductive material can be deposited after the etch process. The resulting structure is cured anytime after etching in order to transform the resist like PPLK into a permanent low-k material that remains within the structure.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Maxime Darnon, Qinghuang Lin
  • Patent number: 8629561
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Patent number: 8546263
    Abstract: Embodiments of the invention generally relate to methods for fabricating devices on semiconductor substrates. More specifically, embodiments of the invention relate to methods of patterning magnetic materials. Certain embodiments described herein use a reducing chemistry containing a hydrogen gas or hydrogen containing gas with an optional dilution gas at temperatures ranging from 20 to 300 degrees Celsius at a substrate bias less than 1,000 DC voltage to reduce the amount of sputtering and redeposition. Exemplary hydrogen containing gases which may be used with the embodiments described herein include NH3, H2, CH4, C2H4, SiH4, and H2S. It has been found that patterning a magnetic tunnel junction with an oxidizer-free gas mixture comprising hydrogen maintains the integrity of the magnetic tunnel junction without producing harmful conductive residue.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 1, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Olivier Joubert, Benjamin Schwarz, Jérémy Gilbert Maurice Pereira, Kevin Menguelti, Erwine Maude Pargon, Maxime Darnon
  • Patent number: 8475667
    Abstract: The present disclosure relates to a method of patterning a photosensitive material on a polymeric fill matrix comprising at least one latent photoacid generator; and a structure prepared according to said method. The method comprises: a. depositing a polymeric fill matrix comprising at least one latent photoacid generator; b. curing the polymeric fill matrix; c. depositing a layer of photosensitive material directly onto the cured polymeric fill matrix; and d. forming a pattern with at least one opening in the layer of photosensitive material with lithography.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Maxime Darnon, Pratik P. Joshi, Qinghuang Lin
  • Patent number: 8449781
    Abstract: The present disclosure relates to a method for selectively etching-back a polymer matrix to expose tips of carbon nanotubes comprising: a. growing carbon nanotubes on a conductive substrate; b. filling the gap around the carbon nanotubes with a polymeric fill matrix comprising at least one latent photoacid generator; and c. selectively etching-back the polymeric fill matrix to expose tips of the carbon nanotubes.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Maxime Darnon, Gerald W. Gibson, Pratik P. Joshi, Ryan M. Martin, Ying Zhang
  • Publication number: 20130056874
    Abstract: A semiconductor device is accepted at a stage of its fabrication, at which stage the device includes a diffusion-barrier cap-material (DBCM) layer and an intermetal dielectric layer covering the DBCM layer. The DBCM layer is exposed and it is suitable for removal by an etching procedure in a portion of a pattern contained in the intermetal dielectric layer. A silylation treatment is performed on the semiconductor device prior to the etching procedure for removing the DBCM layer. The intermetal dielectric layer of the completed device has surfaces in contact with metal interconnects and metal vias, and it may have an excess of carbon content near at least a portion of the these surfaces.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maxime Darnon, Geraud J.-M. Dubois, Sebastian U. Engelmann, Teddie P. Magbitang, Sampath Purushothaman, Muthumanickam Sankarapandian, Willi Volksen