Patents by Inventor Maximilian Fleischer

Maximilian Fleischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210249196
    Abstract: An organometallic perovskite solar cell and manufacturing process, in particular a solar cell having a lead or tin organometallic photon absorber layer. The organometallic solar cell includes an absorber layer containing a compound which crystallizes in the perovskite crystal lattice and which includes a lithium-free hole conductor layer.
    Type: Application
    Filed: July 8, 2019
    Publication date: August 12, 2021
    Applicant: Siemens Energy Global GmbH & Co. KG
    Inventors: Seckin Akin, Maximilian Fleischer, Michael Grätzel, Hui-Seon Kim, Jiyoun Seo, Elfriede Simon, Shaik Mohammed Zakeeruddin
  • Patent number: 10760170
    Abstract: The present disclosure relates to electrolysis. For example, an electrolysis system for carbon dioxide utilization may include: an electrolysis cell having an anode and a cathode, where carbon dioxide reduces at the cathode to at least one hydrocarbon compound or to carbon monoxide; first and second electrolyte reservoirs; a first product gas line from the first electrolyte reservoir; a second product gas line from the second electrolyte reservoir; a first connecting line supplying electrolyte from the first electrolyte reservoir to the anode; a second connecting line taking electrolyte from the anode to the second electrolyte reservoir; a third connecting line supplying electrolyte from the second electrolyte reservoir to the cathode; a fourth connecting line taking electrolyte from the cathode off to the first electrolyte reservoir; and a pressure-equalizing connection directly connecting the first and second electrolyte reservoirs.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: September 1, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Maximilian Fleischer, Philippe Jeanty, Ralf Krause, Erhard Magori, Nayra Sofia Romero Cuéllar, Bernhard Schmid, Günter Schmid, Kerstin Wiesner-Fleischer
  • Publication number: 20200175307
    Abstract: Systems and methods for image classification include receiving imaging data of in-vivo or excised tissue of a patient during a surgical procedure. Local image features are extracted from the imaging data. A vocabulary histogram for the imaging data is computed based on the extracted local image features. A classification of the in-vivo or excised tissue of the patient in the imaging data is determined based on the vocabulary histogram using a trained classifier, which is trained based on a set of sample images with confirmed tissue types.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Ali Kamen, Shanhui Sun, Terrence Chen, Tommaso Mansi, Alexander Michael Gigler, Patra Charalampaki, Maximilian Fleischer, Dorin Comaniciu
  • Publication number: 20200144238
    Abstract: The invention relates to a tandem PV cell group (1) having two PV cells (11, 21) of different cell types. A separate power electronic unit (31, 32) is assigned to each of the PV cells in such a manner that a voltage generated in the particular PV cell or the corresponding power yield can be supplied to the assigned power electronic unit. The power electronic units can be operated independently of one another with the aid of a control device (40) in such a manner that each PV subsystem having one of the PV cells in each case and the power electronic unit assigned to the particular PV cell operates at the optimum operating point thereof. For this purpose, the control device can operate in such a manner that, during operation of the power electronic unit of each PV subsystem, a product of the power yield and the cell voltage of the PV cell assigned to the particular power electronic unit is at a maximum.
    Type: Application
    Filed: March 6, 2018
    Publication date: May 7, 2020
    Inventors: Maximilian Fleischer, Armin Schnettler
  • Patent number: 10604853
    Abstract: The invention relates to a method for converting carbon dioxide and water, wherein the electrolyte comprises a proton sponge which serves to accumulate CO2 in the electrolyte. The invention further relates to a corresponding use of a proton sponge and to an electrolyte comprising at least one proton sponge.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: March 31, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Maximilian Fleischer, Philipp Groenninger, Ralf Krause, Mark Matzas, Guenter Schmid, Kerstin Wiesner
  • Publication number: 20190382906
    Abstract: Various embodiments include an electrolysis method comprising: applying a pulsed voltage or a pulsed current between an anode and a cathode; repeatedly measuring a respective current OCP at the cathode in a zero-current state relative to a reference system; and controlling the pulsed voltage or the pulsed current so a working potential of the cathode in the current-carrying state with respect to the reference system has a defined progression relative to the respective current OCP. The defined progression includes a first phase at a cathodic level and a second phase at an anodic level.
    Type: Application
    Filed: February 1, 2018
    Publication date: December 19, 2019
    Applicant: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Kerstin Wiesner-Fleischer, Andreas Engelbrecht, Martin Hämmerle, Ralf Moos
  • Patent number: 10385732
    Abstract: The present disclosure relates to power plants. The teachings thereof may be embodied in power plants which extract and store carbon dioxide from flue gas generated in the power plant, and in methods for operating a power plant of this kind. For example, a method for operating a power plant may include: generating electrical energy from a combustion process, extracting carbon dioxide from a flue gas generated during the combustion process; storing the extracted carbon dioxide; acquiring current electricity price data; comparing the current electricity price data with an electricity price threshold; and if the electricity price falls below the electricity price threshold, operating an electrolysis device to convert stored carbon dioxide into other substances.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: August 20, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Maximilian Fleischer, Michael Weinhold
  • Publication number: 20190233958
    Abstract: Various embodiments include a system for carbon dioxide electrolysis comprising: an electrolysis cell having an anode and a cathode comprising a gas diffusion electrode adjoined by a gas space and a cathode space; an electrolyte circuit adjoining the electrolysis cell; a gas supply for supplying carbon dioxide-containing gas to the gas space, the gas space including an electrolyte outlet; and a shutoff device for the electrolyte outlet, wherein the shutoff device opens when a pressure differential between the gas space and the cathode space exceeds a threshold value.
    Type: Application
    Filed: May 18, 2017
    Publication date: August 1, 2019
    Applicant: Siemens Aktiengesellschaft
    Inventors: Philippe Jeanty, Erhard Magori, Van An Du, Angelika Tawil, Kerstin Wiesner-Fleischer, Oliver von Sicard, Maximilian Fleischer, Savo Asanin
  • Publication number: 20180358182
    Abstract: A method is provided for producing an electro-optical and/or optoelectronic layer. In the method, the layer is formed with perovskite material of the composition ABX3 by cold gas spraying at least a starting material having the perovskite material. X is also formed with at least one halogen or a mixture of multiple halogens. In the method for producing an electro-optical or optoelectronic device with at least one electro-optical or optoelectronic layer, the at least one electro-optical or optoelectronic layer is formed with a perovskite material by the method. The device is, in particular, an electro-optical or optoelectronic device, such as an energy converter, a solar cell, a light diode, or an X-ray detector. The device has an electro-optical layer of this type.
    Type: Application
    Filed: August 17, 2018
    Publication date: December 13, 2018
    Inventors: Maximilian Fleischer, Ralf Moos, Tanaji Gujar, Dominik Hanft, Fabian Panzer, Mukundan Thelakkat
  • Publication number: 20180195184
    Abstract: The present disclosure relates to electrolysis. The teachings thereof may be embodied in a reduction process and/or an electrolysis system for electrochemical carbon dioxide utilization wherein carbon dioxide is introduced into an electrolysis cell and reduced at a cathode. For example, an electrolysis system for carbon dioxide utilization may comprise: an electrolyzer including an anode in an anode space and a cathode in a cathode space. The cathode space has an entrance for carbon dioxide. The cathode space comprises a catholyte including alkali metal cations. The anode space has an entrance for an anolyte. The anode space comprises an anolyte comprising chlorine anions.
    Type: Application
    Filed: July 30, 2016
    Publication date: July 12, 2018
    Applicant: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Philippe Jeanty, Ralf Krause, Erhard Magori, Anna Maltenberger, Sebastian Neubauer, Christian Reller, Bernhard Schmid, Günter Schmid, Elena Volkova, Kerstin Wiesner-Fleischer
  • Publication number: 20180179649
    Abstract: The present disclosure relates to electrolysis. For example, an electrolysis system for carbon dioxide utilization may include: an electrolysis cell having an anode and a cathode, where carbon dioxide reduces at the cathode to at least one hydrocarbon compound or to carbon monoxide; first and second electrolyte reservoirs; a first product gas line from the first electrolyte reservoir; a second product gas line from the second electrolyte reservoir; a first connecting line supplying electrolyte from the first electrolyte reservoir to the anode; a second connecting line taking electrolyte from the anode to the second electrolyte reservoir; a third connecting line supplying electrolyte from the second electrolyte reservoir to the cathode; a fourth connecting line taking electrolyte from the cathode off to the first electrolyte reservoir; and a pressure-equalizing connection directly connecting the first and second electrolyte reservoirs.
    Type: Application
    Filed: May 31, 2016
    Publication date: June 28, 2018
    Applicant: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Philippe Jeanty, Ralf Krause, Erhard Magori, Nayra Sofia Romero Cuéllar, Bernhard Schmid, Günter Schmid, Kerstin Wiesner-Fleischer
  • Publication number: 20170328239
    Abstract: The present disclosure relates to power plants. The teachings thereof may be embodied in power plants which extract and store carbon dioxide from flue gas generated in the power plant, and in methods for operating a power plant of this kind. For example, a method for operating a power plant may include: generating electrical energy from a combustion process, extracting carbon dioxide from a flue gas generated during the combustion process; storing the extracted carbon dioxide; acquiring current electricity price data; comparing the current electricity price data with an electricity price threshold; and if the electricity price falls below the electricity price threshold, operating an electrolysis device to convert stored carbon dioxide into other substances.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 16, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Michael Weinhold
  • Publication number: 20170227487
    Abstract: The teachings of present disclosure may be embodied in gas sensors for detecting oxygen and methods for detecting oxygen in a gas mixture. For example, a gas sensor for detecting oxygen in a gas mixture may include: an oxygen ion conductor; at least two electrodes arranged on the oxygen ion conductor, the at least two of the electrodes arranged to come into contact with the gas mixture during operation of the gas sensor; a control device applying a polarization voltage or a polarization current to the at least two electrodes during a polarization period; a measuring device for measuring the current or the voltage at the at least two electrodes; and an evaluation device for calculating the oxygen content from the measured voltage or the measured current. Calculating the oxygen content may be based on: a current measured during the polarization period, or a charge which has flowed over the polarization period, or a voltage measured directly after the polarization period.
    Type: Application
    Filed: July 15, 2015
    Publication date: August 10, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Sabine Fischer, Maximilian Fleischer, Erhard Magori, Roland Pohle, Nico Straub
  • Publication number: 20170212073
    Abstract: A gas sensor for detecting nitrogen oxides in a gas mixture may include at least two electrodes of the same material arranged on an oxygen ion conductor. When the gas sensor is operated, both electrodes come into contact with the gas mixture. The gas sensor is then heated from a first temperature to a second temperature. The second temperature of the gas sensor is maintained for a maximum of 15 minutes. The gas sensor is then cooled from the second temperature to the first temperature. During the heating, maintaining and/or cooling of the temperature, a cyclical polarisation is performed with alternating polarity including a polarisation voltage below the reduction voltage of the oxygen ion conductor.
    Type: Application
    Filed: July 21, 2015
    Publication date: July 27, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Sabine Fischer, Maximilian Fleischer, Erhard Magori, Ralf Moos, Roland Pohle
  • Publication number: 20170189882
    Abstract: The disclosure pertains to a microstructure for adsorbing/desorbing at least one gas component of a gas supplied to the microstructure. The microstructure includes a semiconductor substrate having a bottom and a top. The microstructure also includes a plurality of micro-channels, extending from the bottom to the top of the semiconductor substrate. A top surface of micro-channel is configured to adsorb and/or desorb the at least one gas component when the gas is passed through the micro-channels.
    Type: Application
    Filed: June 15, 2015
    Publication date: July 6, 2017
    Inventors: Ignaz EISELE, Maximilian FLEISCHER, Harry HEDLER, Markus SCHIEBER, Jörg ZAPF
  • Publication number: 20160376714
    Abstract: The invention relates to a method for converting carbon dioxide and water, wherein the electrolyte comprises a proton sponge which serves to accumulate CO2 in the electrolyte. The invention further relates to a corresponding use of a proton sponge and to an electrolyte comprising at least one proton sponge.
    Type: Application
    Filed: November 18, 2014
    Publication date: December 29, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Philipp Groenninger, Ralf Krause, Mark Matzas, Guenter Schmid, Kerstin Wiesner
  • Publication number: 20160282297
    Abstract: A gas sensor for detecting nitrogen oxides in a gaseous mixture, including an oxygen ion conductor and at least two electrodes mounted on the oxygen ion conductor, the electrodes consisting of the same material, and wherein the gas sensor is designed so that during operation of the gas sensor both electrodes come into contact with the gaseous mixture.
    Type: Application
    Filed: October 23, 2014
    Publication date: September 29, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Sabine Fischer, Maximilian Fleischer, Erhard Magori, Ralf Moos, Roland Pohle
  • Patent number: 9329161
    Abstract: A device for the gas analysis of a gas mixture includes a converter configured to convert a first gas component into a target gas component, a sensor system configured to detect the target gas component or another component of the gas mixture after the conversion by the converter, and an evaluating apparatus. The converter is further configured to change the concentration of a second gas component or to cause a conversion to a second target gas component. The sensor system is configured to determine the concentration of the second gas component or of the second target gas component. The evaluating apparatus is configured to determine a value for the aging of the converter on the basis of the concentration of the second gas component or of the second target gas component.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 3, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Maximilian Fleischer, Erhard Magori, Roland Pohle, Florian Reuter
  • Patent number: 9301709
    Abstract: A method for optimizing a gas conversion rate in a respiratory gas analyzer, more particularly for nitric oxide (NO) in the respiratory gas, and an associated device are disclosed.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: April 5, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Abraham-Fuchs, Maximilian Fleischer, Karsten Hiltawsky, Oliver Hornung, Thomas Krüger-Sundhaus, Erhard Magori, Roland Pohle, Oliver Von Sicard
  • Patent number: 9234871
    Abstract: Volatile organic compounds or oxidizing gases are detected when the work function of a metal-organic framework is measured to produce a sensor signal.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 12, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Maximilian Fleischer, Roland Pohle, Kerstin Wiesner, Oliver Von Sicard