Patents by Inventor Mehmet Ozgur

Mehmet Ozgur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927281
    Abstract: A three-way (3-way) Micro-Electro-Mechanical Systems (MEMS)-based micro-valve device and method of fabrication for the implementation of a three-way MEMS-based micro-valve that uses a multicity of piezoelectric actuators. The 3-way has a wide range of applications including medical, industrial control, aerospace, automotive, consumer electronics and products, as well as any application(s) requiring the use of three-way micro-valves for the control of fluids. The three-way microvalve device and method of fabrication can be tailored to the requirements of a wide range of applications and fluid types. The microvalve can be used to control fluids at high pressures and provides for low flow resistances when the microvalve is open and has low leakage when closed.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: March 12, 2024
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Publication number: 20240074971
    Abstract: A pharmaceutical composition of ivermectin nano-suspension is provided, which is suitable for nebulizer, where dispersion medium is water, containing at least 0.1 mg/mL tween 80 stabilizer.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 7, 2024
    Inventors: Nefise Savrun, Mehmet Ozgur Soydan
  • Publication number: 20230313857
    Abstract: A leaf spring structure is designed as a single piece to be able to change the spring rates of leaf springs under a load independently from the manufacturing material. The operating mechanism of the leaf spring allows for increasing the spring rates by deactivating the short spring, which remains between the point A and the point B, as a result of the interaction between the short spring and the long spring after a certain amount of vertical displacement in the leaf spring.
    Type: Application
    Filed: September 28, 2020
    Publication date: October 5, 2023
    Applicant: OLGUN CELIK SANAYI VE TICARET ANONIM SIRKETI
    Inventors: Mehmet Ozgur ARSLAN, Gediz KULAC
  • Publication number: 20220189060
    Abstract: The present disclosure describes approaches to camera re-localization using a graph neural network (GNN). A re-localization model includes encoding an input image into a feature map. The model retrieves reference images from an image database of a previously scanned environment based on the feature map of the image. The model builds a graph based on the image and the reference images, wherein nodes represent the image and the reference images, and edges are defined between the nodes. The model may iteratively refine the graph through auto-aggressive edge-updating and message passing between nodes. With the graph built, the model predicts a pose of the image based on the edges of the graph. The pose may be a relative pose in relation to the reference images, or an absolute pose.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Inventors: Mehmet Özgür Türkoglu, Aron Monszpart, Eric Brachmann, Gabriel J. Brostow
  • Patent number: 11075086
    Abstract: A method for the etching of deep, high-aspect ratio features into silicon carbide (SiC), gallium nitride (GaN) and similar materials using an Inductively-Coupled Plasma (ICP) etch process technology is described. This technology can also be used to etch features in silicon carbide and gallium nitride having near vertical sidewalls. The disclosed method has application in the fabrication of electronics, microelectronics, power electronics, Monolithic Microwave Integrated Circuits (MMICs), high-voltage electronics, high-temperature electronics, high-power electronics, Light-Emitting Diodes (LEDs), Micro-Electro-Mechanical Systems (MEMS), micro-mechanical devices, microelectronic devices and systems, nanotechnology devices and systems, Nano-Electro-Mechanical Systems (NEMS), photonic devices, and any devices and/or structures made from silicon carbide and/or gallium nitride.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 27, 2021
    Assignee: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventors: Mehmet Ozgur, Michael Pedersen, Michael A. Huff
  • Patent number: 11049725
    Abstract: A method for the etching of deep, high-aspect ratio features into silicon carbide (SiC), gallium nitride (GaN) and similar materials using an Inductively-Coupled Plasma (ICP) etch process technology is described. This technology can also be used to etch features in silicon carbide and gallium nitride having near vertical sidewalls. The disclosed method has application in the fabrication of electronics, microelectronics, power electronics, Monolithic Microwave Integrated Circuits (MMICs), high-voltage electronics, high-temperature electronics, high-power electronics, Light-Emitting Diodes (LEDs), Micro-Electro-Mechanical Systems (MEMS), micro-mechanical devices, microelectronic devices and systems, nanotechnology devices and systems, Nano-Electro-Mechanical Systems (NEMS), photonic devices, and any devices and/or structures made from silicon carbide and/or gallium nitride.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 29, 2021
    Assignee: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventors: Mehmet Ozgur, Michael Pedersen, Michael A. Huff
  • Patent number: 10910185
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto an electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 2, 2021
    Assignee: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventors: Mehmet Ozgur, Paul Sunal, Lance Oh, Michael Huff, Michael Pedersen
  • Publication number: 20190355538
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto an electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Inventors: Mehmet OZGUR, Paul SUNAL, Lance OH, Michael HUFF, Michael PEDERSEN
  • Patent number: 10403463
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 3, 2019
    Assignee: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventors: Mehmet Ozgur, Paul Sunal, Lance Oh, Michael Huff, Michael Pedersen
  • Publication number: 20180197711
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 12, 2018
    Inventors: Mehmet Ozgur, Paul Sunal, Lance Oh, Michael Huff, Michael Pedersen
  • Patent number: 9852870
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 26, 2017
    Assignee: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventors: Mehmet Ozgur, Paul Sunal, Lance Oh, Michael Huff, Michael Pedersen
  • Patent number: 9099248
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 4, 2015
    Assignee: Corporation for National Research Iniatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 9019686
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 28, 2015
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 8983414
    Abstract: A communication system front-end architecture and a method of fabricating same are disclosed in which a diverse set of semiconductor technologies and device types (including CMOS, SiGe CMOS, InP HBTs (heterojunction bipolar transistors), InP HEMTs (high electron mobility transistors), GaN HEMTs, SiC devices, any number from a diverse set of MEMS sensors and actuators, and potentially photonics) is merged onto a single silicon, or other material substrate to thereby enable the development of smaller, lighter, and higher performance systems.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Corporation for National Reseach Initiatives
    Inventors: Mehmet Ozgur, Michael Pedersen, Michael A. Huff
  • Publication number: 20130344819
    Abstract: A communication system front-end architecture and a method of fabricating same are disclosed in which a diverse set of semiconductor technologies and device types (including CMOS, SiGe CMOS, InP HBTs (heterojunction bipolar transistors), InP HEMTs (high electron mobility transistors), GaN HEMTs, SiC devices, any number from a diverse set of MEMS sensors and actuators, and potentially photonics) is merged onto a single silicon, or other material substrate to thereby enable the development of smaller, lighter, and higher performance systems.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 26, 2013
    Applicant: Corporation for National Research Intiatives
    Inventors: Mehmet Ozgur, Michael Pedersen, Michael A. Huff
  • Publication number: 20130008875
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. HUFF, Mehmet Ozgur
  • Publication number: 20120301981
    Abstract: The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Inventors: Mehmet OZGUR, Paul SUNAL, Lance OH, Michael HUFF, Michael PEDERSEN
  • Publication number: 20090002914
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 1, 2009
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 7188530
    Abstract: A micro-mechanical pressure transducer is disclosed in which a capacitive transducer structure is integrated with an inductor coil to form a LC tank circuit, resonance frequency of which may be detected remotely by imposing an electromagnetic field on the transducer. The capacitive transducer structure comprises a conductive movable diaphragm, a fixed counter electrode, and a predetermined air gap between said diaphragm and electrode. The diaphragm deflects in response to an applied pressure differential, leading to a change of capacitance in the structure and hence a shift of resonance frequency of the LC tank circuit. The resonance frequency of the LC circuit can be remotely detected by measuring and determining the corresponding peak in electromagnetic impedance of the transducer.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael Pedersen, Mehmet Ozgur, Michael A. Huff
  • Patent number: 7045440
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 16, 2006
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur