Patents by Inventor Mei Cai

Mei Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190207211
    Abstract: An electrochemical cell comprising an alkali metal negative electrode layer physically and chemically bonded to a surface of a negative electrode current collector via an intermediate metal chalcogenide layer. The intermediate metal chalcogenide layer may comprise a metal oxide, a metal sulfide, a metal selenide, or a combination thereof. The intermediate metal chalcogenide layer may be formed on the surface of the negative electrode current collector by exposing the surface to a chalcogen or a chalcogen donor compound. Then, the alkali metal negative electrode layer may be formed on the surface of the negative electrode current collector over the intermediate metal chalcogenide layer by contacting at least a portion of the metal chalcogenide layer with a source of sodium or potassium to form a layer of sodium or potassium on the surface of the negative electrode current collector over the metal chalcogenide layer.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 4, 2019
    Inventors: Fang Dai, Meinan He, Shuru Chen, Mei Cai
  • Publication number: 20190207261
    Abstract: An electrolyte system for an electrochemical cell having an electrode comprising a chalcogen-containing electroactive material is provided, along with methods of making the electrolyte system. The electrolyte system includes one or more lithium salts dissolved in one or more solvents. The salts have a concentration in the electrolyte of greater than or equal to about 2M to less than or equal to about 5M. The electrochemical cell including the electrolyte system has a minimum potential greater than or equal to about 0.8 V to less than or equal to about 1.8 V and a maximum charge potential of greater than or equal to about 2.5 V to less than or equal to about 3 V.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Li Yang, Ning Kang, Mei Cai
  • Publication number: 20190207201
    Abstract: In a method of manufacturing an electrochemical cell, a porous or non-porous electrically conductive metal substrate may be provided. A conformal metal chalcogenide layer may be formed on a surface of the metal substrate. The metal substrate with the conformal metal chalcogenide layer may be immersed in a nonaqueous liquid electrolyte solution comprising a lithium salt dissolved in a polar aprotic organic solvent. An electrical potential may be established between the metal substrate and a counter electrode immersed in the nonaqueous liquid electrolyte solution such that lithium ions in the electrolyte solution are reduced to metallic lithium and deposited on the surface of the metal substrate over the metal chalcogenide layer to form a conformal lithium metal layer on the surface of the metal substrate over the metal chalcogenide layer.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 4, 2019
    Inventors: Fang Dai, Shuru Chen, Meinan He, Mei Cai
  • Publication number: 20190207205
    Abstract: An electrochemical cell comprising a lithium metal negative electrode layer physically and chemically bonded to a surface of a negative electrode current collector via an intermediate metal chalcogenide layer. The intermediate metal chalcogenide layer may comprise a metal oxide, a metal sulfide, a metal selenide, or a combination thereof. The intermediate metal chalcogenide layer may be formed on the surface of the negative electrode current collector by exposing the surface to a chalcogen in gas phase. Then, the lithium metal negative electrode layer may be formed on the surface of the negative electrode current collector over the intermediate metal chalcogenide layer by contacting at least a portion of the metal chalcogenide layer with a source of lithium such that the lithium actively wets the metal chalcogenide layer and forms a conformal lithium metal layer on the surface of the negative electrode current collector over the metal chalcogenide layer.
    Type: Application
    Filed: January 4, 2018
    Publication date: July 4, 2019
    Inventors: Keegan Adair, Fang Dai, Mei Cai
  • Publication number: 20190207245
    Abstract: A method of manufacturing an electrochemical cell may comprise exposing a surface of a metal substrate to a chalcogen in gas phase such that a metal chalcogenide layer forms on the surface of the metal substrate. A lithium metal foil may be laminated onto the metal chalcogenide layer on the surface of the metal substrate such that a surface of the lithium metal foil physically and chemically bonds to the metal chalcogenide layer on the surface of the metal substrate.
    Type: Application
    Filed: January 4, 2018
    Publication date: July 4, 2019
    Inventors: Keegan Adair, Fang Dai, Mei Cai
  • Patent number: 10337459
    Abstract: A natural gas fueled vehicle, includes a natural gas fueled Internal Combustion Engine (ICE) to provide motive power to the vehicle. A pressurizable tank is disposed on the vehicle to contain a natural gas. A natural gas adsorbent is disposed in the tank. A fuel supply tube is to convey the natural gas to the ICE. A scroll compressor is on the vehicle to receive the natural gas from the tank and to deliver a first mixture of compressed natural gas and an oil to a gas and oil separator. The gas and oil separator is to receive the first mixture of the compressed natural gas and the oil from the scroll compressor and to separate the oil from the compressed natural gas and to deliver the compressed natural gas to the fuel supply tube substantially free from the oil.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: July 2, 2019
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, Shanghai Winning Energy Technology Corp. LTD
    Inventors: Cunman Zhang, Wei Zhou, Mei Cai, Anne M. Dailly
  • Patent number: 10337671
    Abstract: A product may include a storage vessel that may define a first port opening into the storage vessel, and that may define a second port opening into the storage vessel. A first fill conduit may be connected to the storage vessel at the first port. A second fill conduit may be connected to the storage vessel at the second port. A control mechanism may be connected with the first and second fill conduits. A supply conduit may be connected to the control mechanism. The control mechanism may provide a flow path from the supply conduit to at least one of the first or second fill conduits to fill the storage vessel.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 2, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahmoud H. Abd Elhamid, Mei Cai, Anne M. Dailly, Thomas A. Yersak
  • Publication number: 20190185685
    Abstract: Systems and methods of providing a self-healing UV-protective polymer coating include a polymer matrix formed by initiating polymerization of a UV-absorbing-matrix precursor and a UV initiator and a self-healing portion disposed within the polymer matrix. The polymer matrix includes a plurality of active sites therein. The self-healing portion includes a self-healing precursor that is flowable and a self-healing initiator. The self-healing initiator is configured to polymerize the self-healing precursor using a cationic ring opening process.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Anne M. Dailly, Mei Cai
  • Patent number: 10326166
    Abstract: An example of a gel electrolyte precursor includes a lithium salt, a solvent, a fluorinated monomer, a fluorinated crosslinker, and an initiator. Another example of a gel electrolyte precursor includes a lithium salt, a solvent, and a fluorinated monomer, wherein the fluorinated monomer is methyl 2-(trifluoromethyl) acrylate, tert-butyl 2-(trifluoromethyl)acrylate, or a combination thereof. A gel electrolyte formed from either gel electrolyte precursor may be incorporated into a lithium-based battery.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 18, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Mei Cai, Martin S. Ruthkosky, Bing Li
  • Patent number: 10312501
    Abstract: An example electrolyte includes a solvent, a lithium salt, and an additive selected from the group consisting of a silane with at least one Si—H group; a fluorinated methoxysilane; a fluorinated chlorosilane; and combinations thereof. The electrolyte may be used in a method for making a solid electrolyte interface (SEI) layer on a surface of a lithium electrode. A negative electrode structure may be formed from the method.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 4, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Mei Cai, Fang Dai, Qiangfeng Xiao, Mark W. Verbrugge
  • Publication number: 20190165415
    Abstract: Systems and methods of providing an electrolyte membrane for metal batteries are described. According to aspects of the disclosure, a method includes preparing a mixture including an electrolyte portion and a matrix precursor portion, forming an electrolyte membrane by initiating polymerization of the gel-forming precursor and the gel-forming initiator to thereby form a polymer matrix, and disposing the electrolyte membrane between an anode and a cathode. The matrix precursor portion includes a gel-forming precursor and a gel-forming initiator. The electrolyte portion is disposed substantially throughout the polymer matrix.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Robert M. Lapierre
  • Publication number: 20190165416
    Abstract: Systems and methods of providing an electrolyte membrane for metal batteries are described. According to aspects of the disclosure, a battery cell includes an anode, a cathode, and an electrolyte membrane therebetween. The electrolyte membrane is formed from a mixture including a matrix precursor portion and an electrolyte portion. In some aspects, the membrane is polymerized after being applied to the battery component.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Robert M. Lapierre
  • Publication number: 20190089006
    Abstract: A hybrid separator for an electrochemical cell is provided, along with methods of making the hybrid separator. The hybrid separator includes a first metal-organic framework comprising copper and having a plurality of first pores and a second distinct metal-organic framework comprising indium or zinc and having a plurality of second pores. The hybrid separator is capable of adsorbing one or more lithium salts in at least one of the plurality of first pores or the plurality of second pores so as to be ionically conductive. The hybrid separator may have a conductivity greater than or equal to about 0.1 mS/cm to less than or equal to about 1 mS/cm and is substantially free of any polymeric binder.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Li Yang, Mei Cai, Anne M. Dailly, Fang Dai
  • Patent number: 10224571
    Abstract: The performance and durability of an electrochemical cell using a lithium metal based anode and a compatible lithium-accepting cathode are improved by the use of a suitable lithium electrolyte salt and a new liquid co-solvent mixture for the electrolyte. The co-solvent mixture comprises a non-aqueous ionic liquid, conductive of lithium ions, and a liquid fluorinated organic ether.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 5, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Mei Cai, Fang Dai, Gayatri V. Dadheech
  • Publication number: 20190067744
    Abstract: A method of manufacturing a lithium ion battery cell. A non-aqueous liquid electrolyte solution is placed in contact with particles of a lithium ion-exchanged zeolite material for a time sufficient to remove water molecules from the liquid electrolyte solution. Thereafter, the liquid electrolyte solution may be introduced into an electrochemical cell assembly and hermetically sealed within a cell casing to form a lithium ion battery cell.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Xingcheng Xiao, Mark W. Verbrugge, Mei Cai, Sherman H. Zeng
  • Publication number: 20190058219
    Abstract: A highly-concentrated electrolyte system for an electrochemical cell is provided, along with methods of making the electrolyte system. The electrolyte system includes a bound moiety having an ionization potential greater than an electron affinity and comprising one or more salts selected from the group consisting of: lithium bis(fluorosulfonyl)imide, sodium bis(fluorosulfonyl)imide, potassium bis(fluorosulfonyl)imide, and combinations thereof bound to a solvent comprising one or more solvents selected from the group consisting of: dimethyl carbonate, dimethyl dicarbonate, and combinations thereof. The salts have a concentration in the electrolyte system of greater than or equal to about 4M. A molar ratio of the salts to the dimethyl carbonate is about 0.5. A molar ratio of the salts to the dimethyl dicarbonate is about 1.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Li Yang, Mei Cai, Fang Dai, Yingnan Dong
  • Publication number: 20190058211
    Abstract: A highly-concentrated electrolyte system for an electrochemical cell is provided, along with methods of making the highly-concentrated electrolyte system. The electrolyte system includes a bound moiety having an ionization potential greater than an electron affinity and comprising one or more salts selected from the group consisting of: lithium bis(fluorosulfonyl)imide (LiFSI), sodium bis(fluorosulfonyl)imide (NaFSI), potassium bis(fluorosulfonyl)imide (KFSI), and combinations thereof bound to a solvent comprising dimethoxyethane (DME). The one or more salts have a concentration in the electrolyte system of greater than about 4M, and a molar ratio of the one or more salts to the dimethoxyethane (DME) is greater than or equal to about 1 to less than or equal to about 1.5. The one or more salts binds to the dimethoxyethane (DME) causing the electrolyte system to be substantially free of unbound dimethoxyethane (DME) and unbound bis(fluorosulfonyl)imide (FSI?).
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Li Yang, Mei Cai
  • Publication number: 20190058215
    Abstract: Systems and methods of providing self-healing gel-type electrolyte composites for metal batteries are disclosed. According to aspects of the disclosure, a method includes preparing a ternary mixture including an electrolyte portion, a matrix precursor portion, and a self-healing portion, forming a self-healing gel-electrolyte membrane by initiating polymerization of the gel-forming precursor and the gel-forming initiator to thereby form a polymer matrix, and disposing the self-healing gel-electrolyte membrane between an anode and a cathode. The self-healing portion includes a self-healing precursor that is flowable and a self-healing initiator. The matrix precursor portion includes a gel-forming precursor and a gel-forming initiator. The electrolyte portion and the self-healing portion are disposed substantially throughout the polymer matrix and the polymer matrix includes a plurality of gel-forming active sites.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 21, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Robert M. Lapierre
  • Publication number: 20190058210
    Abstract: An electrochemical cell includes a negative electrode that contains lithium and an electrolyte system. In one variation, the electrolyte system includes a first liquid electrolyte, a solid-dendrite-blocking layer, and an interface layer. The solid dendrite-blocking layer is ionically conducting and electrically insulating. The dendrite-blocking layer includes a first component and a distinct second component. The dendrite-blocking layer has a shear modulus of greater than or equal to about 7.5 GPa at 23° C. The interface layer is configured to interface with a negative electrode including lithium metal on a first side and the dendrite blocking layer on a second opposite side. The interface layer includes a second liquid electrolyte, a gel polymer electrolyte, or a solid-state electrolyte. The dendrite-blocking layer is disposed between the first liquid electrolyte and the interface layer.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Fang Dai, Li Yang, Thomas A. Yersak, James R. Salvador, Mei Cai
  • Publication number: 20190044134
    Abstract: A negative lithium-containing electrode for an electrochemical cell is provided, along with methods of making such a negative lithium-containing electrode. The method includes depositing a first precursor and a second precursor in a vapor deposition process onto one or more surface regions of a negative electrode material comprising lithium. The first precursor and the second precursor react to form an inorganic-organic composite surface coating on the one or more surface regions. The first precursor comprises an organic mercapto-containing silane and the second precursor comprises an inorganic silane.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 7, 2019
    Inventors: Fang Liu, Duo Xu, Yunfeng Lu, Qiangfeng Xiao, Mei Cai