Patents by Inventor Mei Cai

Mei Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11165052
    Abstract: A negative electrode according to various aspects of the present disclosure includes a negative electroactive material and a layer. The negative electroactive material includes a lithium-aluminum alloy. The layer is disposed directly on at least a portion of the negative electroactive material and coupled to the negative electroactive material. The layer includes anodic aluminum oxide and has a plurality of pores. The present disclosure also provides an electrochemical cell including the negative electrode. In certain aspects, the negative electroactive material is electrically conductive and functions as a negative electrode current collector such that the electrochemical cell is free of a distinct negative electrode current collector component. In certain aspects, the layer is ionically conductive and electrically insulating and functions as a separator such that the electrochemical cell is free of a distinct separator component.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 2, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Jin Liu, Mei Cai, Meinan He, Hongliang Wang
  • Patent number: 11145897
    Abstract: Systems and methods of providing an electrolyte membrane for metal batteries are described. According to aspects of the disclosure, a method includes preparing a mixture including an electrolyte portion and a matrix precursor portion, forming an electrolyte membrane by initiating polymerization of the gel-forming precursor and the gel-forming initiator to thereby form a polymer matrix, and disposing the electrolyte membrane between an anode and a cathode. The matrix precursor portion includes a gel-forming precursor and a gel-forming initiator. The electrolyte portion is disposed substantially throughout the polymer matrix.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: October 12, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Robert M. Lapierre
  • Patent number: 11125392
    Abstract: A storage vessel includes a plurality of storage cells arranged in series. The storage vessel defines a first port that opens into at least one of the storage cells. A fill conduit is connected to the storage vessel at the port. A valve is connected with the fill conduit and is configured to control a supply of fluid through the fill conduit to fill the storage vessel. A heat sink is disposed in the storage vessel and is configured to reduce heat of the fluid during the fill of the storage vessel.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: September 21, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Thomas A. Yersak
  • Patent number: 11114696
    Abstract: An electrolyte system for an electrochemical cell having an electrode comprising a chalcogen-containing electroactive material is provided, along with methods of making the electrolyte system. The electrolyte system includes one or more lithium salts dissolved in one or more solvents. The salts have a concentration in the electrolyte of greater than or equal to about 2M to less than or equal to about 5M. The electrochemical cell including the electrolyte system has a minimum potential greater than or equal to about 0.8 V to less than or equal to about 1.8 V and a maximum charge potential of greater than or equal to about 2.5 V to less than or equal to about 3 V.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 7, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Ning Kang, Mei Cai
  • Patent number: 11101501
    Abstract: An example electrolyte includes a solvent, a lithium salt, and an additive selected from the group consisting of a mercaptosilane, a mercaptosiloxane, and combinations thereof. The electrolyte may be used in a method for making a solid electrolyte interface (SEI) layer on a surface of an electrode. A negative electrode structure may be formed from the method.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 24, 2021
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Fang Liu, Qiangfeng Xiao, Yunfeng Lu, Mei Cai, Fang Dai, Li Yang
  • Patent number: 11094998
    Abstract: A ceramic-coated separator for a lithium-containing electrochemical cell and methods of preparing the ceramic-coated separator are provided. The ceramic-coated separator may be manufactured by preparing a slurry that includes one or more lithiated oxides and a binder and disposing the slurry onto one or more surfaces of a porous substrate. The slurry may be dried to from a ceramic coating on the one or more surfaces of the porous substrate so as to create the ceramic-coated separator. The ceramic coating may include one or more lithiated oxides selected from Li2SiO3, LiAlO2, Li2TiO3, LiNbO3, Li3PO4, Li2CrO4, and Li2Cr2O7.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 17, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Jiagang Xu, Mei Cai
  • Patent number: 11084947
    Abstract: Systems and methods of providing a self-healing UV-protective polymer coating include a polymer matrix formed by initiating polymerization of a UV-absorbing-matrix precursor and a UV initiator and a self-healing portion disposed within the polymer matrix. The polymer matrix includes a plurality of active sites therein. The self-healing portion includes a self-healing precursor that is flowable and a self-healing initiator. The self-healing initiator is configured to polymerize the self-healing precursor using a cationic ring opening process.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: August 10, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Anne M. Dailly, Mei Cai
  • Publication number: 20210234198
    Abstract: The present disclosure provides an electrolyte system for an electrode having a loading density of greater than or equal to about 4.0 mAh/cm2. The electrolyte system may include greater than or equal to about 1.0 M to less than or equal to about 1.5 M of lithium fluorosulfonylimide (LiN(FSO2)2) (LiFSI); less than or equal to about 0.5 M of lithium hexafluorophosphate (LiPF6); and one or more solvents comprising ethylene carbonate (EC), where the electrolyte includes less than or equal to about 30 wt. % of ethylene carbonate (EC). The electrolyte system may also include one or more electrolyte additives selected from corrosion-resistant additives, formation additives, and stabilizer additives. The formation additives and/or stabilizer additive may assist in the formation and maintenance of a solid electrolyte interface layer on one or more surfaces of the graphite-containing electrode.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 29, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Meinan HE, Mei Cai, Li Yang, Mary E. Fortier, Kely Markley
  • Publication number: 20210218015
    Abstract: The present disclosure relates to sulfur-containing electrodes and methods for forming the same. For example, the method may include disposing an electroactive material on or near a current collector to form an electroactive material layer having a first porosity and applying pressure and heat to the electroactive material layer so that the electroactive material layer has a second porosity. The first porosity is greater than the second porosity. The electroactive material may include a plurality of electroactive material particles and one or more salt additives. The method may further include contacting the electroactive material layer and an electrolyte such that the electrolyte dissolves the plurality of one or more salt particles so that the electroactive material layer has a third porosity. The third porosity may be greater than the second porosity and less than the first porosity.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shuru CHEN, Fang DAI, Mei CAI
  • Publication number: 20210218048
    Abstract: A battery that cycles lithium ions includes at least one first monopolar electrode having a first polarity and having a first tab and at least one second monopolar electrode having a second polarity opposite to the first polarity and a second tab. The first tab and the second tab are in direct electrical communication with an external circuit. At least one bipolar electrode is disposed between and electrically insulated from the first monopolar electrode and the second monopolar electrode, wherein a first side of the bipolar electrode has the first polarity and a second side of the bipolar electrode has the second polarity. The battery thus comprises at least one first unit cell connected in parallel and at least one second unit cell connected in series.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fang DAI, Hongliang WANG, Mahmoud ABD ELHAMID, Shuru CHEN, Mei CAI
  • Publication number: 20210218057
    Abstract: In an embodiment, a metal-organic framework electrolyte layer, can comprise a plurality of metal-organic frameworks having a porous structure and comprising a solvated salt absorbed in the porous structure; and a polymer. The MOF electrolyte layer can have at least one of a density of less than or equal to 0.3 g/cm3 or a Brunauer-Emmett-Teller surface area of 500 to 4,000 m2/g. A lithium metal battery can comprise the metal-organic framework electrolyte layer.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 15, 2021
    Inventors: Fang Dai, Anne M. Dailly, Mei Cai
  • Patent number: 11063248
    Abstract: Methods of removing a passivation layer on a lithium-containing electrode and preparing a protective coating on the lithium-containing electrode by applying a graphene source are provided herein. A lithium-containing electrode with the protective coating including graphene and lithium-containing electrochemical cells including the same are also provided herein.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: July 13, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Mei Cai
  • Publication number: 20210194054
    Abstract: The present technology relates to gel electrolytes for using in lithium-ion electrochemical cells and methods of forming the same. For example, the method may include adding one or more gelation reagents to an electrochemical cell including one or more liquid electrolyte precursors. The one or more gelation reagents include one or more initiators and one or more crosslinking agents. Each of the one or more initiators may be one of a thermal initiator and an actinic/electron beam initiator.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fang DAI, Shuru CHEN, Mei CAI
  • Publication number: 20210187903
    Abstract: A thermal insulation component according to various aspects of the present disclosure includes a matrix, a crosslinking precursor, and a crosslinking initiator. The matrix includes a thermal insulation material having a thermal conductivity of less than or equal to about 5 W/mK. The crosslinking precursor is embedded in the matrix. The crosslinking precursor includes at least one of an acrylate functional group or a methacrylate functional group. The crosslinking initiator is embedded in the matrix. The crosslinking initiator is configured to decompose to initiate crosslinking of the crosslinking precursor. In certain aspects, the present disclosure also provides an electronics assembly including an electronic component and a thermal insulation material in thermal communication with the electronic component. In certain aspects, the present disclosure also provides methods of manufacturing the thermal insulation component.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fang DAI, Mei CAI, Fan XU, Tao WANG
  • Publication number: 20210184199
    Abstract: A method for preparing an electrochemical cell that cycles lithium ions is provided. The method includes lithiating an electroactive material using a first electrolyte and contacting the lithiated electroactive material and a second electrolyte to form the electrochemical cell. Lithiating the electroactive material includes contacting the electroactive material and a first electrolyte to form a pretreated electroactive material; contacting a lithium source and the pretreated electroactive material; and applying a pressure to the lithium source and the pretreated electroactive material so as to form a lithiated electroactive material. The first electrolyte includes greater than or equal to about 10 wt. % to less than or equal to about 50 wt. % of one or more solvents selected, including for example, fluoroethylene carbonate (FEC). The second electrolyte includes less than or equal to about 5 wt. % of cyclic carbonates and, in certain aspects, one or more electrolyte additives.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Inventors: Meinan HE, Shuru CHEN, Biqiong WANG, Mei CAI
  • Publication number: 20210184200
    Abstract: A method of applying a homogenous film coating to a constituent particle of component includes setting up a target element in a sputtering chamber. The method also includes arranging a receptacle in the sputtering chamber. The method additionally includes arranging the constituent particle on the receptacle. The method also includes bombarding the target element via energetic particles to eject material from the target element and deposit the material onto the constituent particle. The method further includes agitating the receptacle during the bombarding to apply the material to the constituent particle as the homogenous film coating. The method may be used to apply a homogenous thin film coating to a sulfur-infused constituent particle for a sulfur cathode in a lithium-sulfur battery.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ruchira R. Dharmasena, Shuru Chen, Fang Dai, Mei Cai
  • Patent number: 11031586
    Abstract: Methods for manufacturing sulfur electrodes include providing an electrode, wherein the electrode includes a current collector having a first surface, and a sulfur-based host material applied to the first surface of the current collector, wherein the sulfur-based host material comprises one or more sulfur compounds, one or more electrically conductive carbon materials, and one or more binders. The methods further include forming a plurality of channels within the sulfur-based host material using a laser or electron beam, wherein the plurality of channels define a plurality of host material columns, each column having one or more exterior surfaces contiguous which one or more of the channels which extend outward from the first surface of the current collector. Each of the one or more exterior surfaces can define a heat affected zone comprising a higher concentration of sulfur than the host material column prior to forming the plurality of channels.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: June 8, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuru Chen, Hongliang Wang, Fang Dai, Meinan He, Mei Cai
  • Publication number: 20210159502
    Abstract: An electrode component for an electrochemical cell is provided herein. The electrode component includes a current collector having a first surface, a metal oxide layer disposed on the first surface of the current collector, and a lithium-containing layer bonded to the first surface of the current collector. The metal oxide layer includes a plurality of features. A method for manufacturing such an electrode component is also provided herein. The method includes directing a laser beam toward the first surface of the current collector in the presence of oxygen to form the metal oxide layer on the first surface and applying the lithium-containing layer to the metal oxide layer thereby bonding the lithium-containing layer with the current collector.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fang DAI, Hongliang WANG, Shuru CHEN, Qinglin ZHANG, Mei CAI
  • Publication number: 20210154979
    Abstract: Disclosed is a multilayer panel, comprising: a center layer comprising graphene, wherein the center layer comprises a first surface and an opposing second surface; a first polymer layer deposited on the first surface of the center layer and a second polymer layer deposited on the second surface of the center layer; and a first glass layer deposited on an outer surface of the first polymer layer and a second glass layer deposited on an outer surface of the second polymer layer; wherein the first polymer layer, the second polymer layer, or any combination(s) thereof comprise carbon filler.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Anne M. Dailly, Mei Cai, Michael D. Richardson, Todd J. Gordon
  • Patent number: 10998578
    Abstract: Systems and methods of providing an electrolyte membrane for metal batteries are described. According to aspects of the disclosure, a battery cell includes an anode, a cathode, and an electrolyte membrane therebetween. The electrolyte membrane is formed from a mixture including a matrix precursor portion and an electrolyte portion. In some aspects, the membrane is polymerized after being applied to the battery component.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 4, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Fang Dai, Mahmoud Abd Elhamid, Mei Cai, Anne M. Dailly, Robert M. Lapierre