Patents by Inventor Meikei Ieong

Meikei Ieong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7091069
    Abstract: A method of creating ultra tin body fully-depleted SOI MOSFETs in which the SOI thickness changes with gate-length variations thereby minimizing the threshold voltage variations that are typically caused by SOI thickness and gate-length variations is provided. The method of present invention uses a replacement gate process in which nitrogen is implanted to selectively retard oxidation during formation of a recessed channel. A self-limited chemical oxide removal (COR) processing step can be used to improve the control in the recessed channel step. If the channel is doped, the inventive method is designed such that the thickness of the SOI layer is increased with shorter channel length. If the channel is undoped or counter-doped, the inventive method is designed such that the thickness of the SOI layer is decreased with shorter channel length.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: August 15, 2006
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Meikei Ieong, Zhibin Ren, Paul M. Solomon, Min Yang
  • Patent number: 7087965
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Patent number: 7075150
    Abstract: The present invention provides a thin channel MOSFET having low external resistance. In broad terms, a silicon-on-insulator structure comprising a SOI layer located atop a buried insulating layer, said SOI layer having a channel region which is thinned by the presence of an underlying localized oxide region that is located on top of and in contact with said buried insulating layer; and a gate region located atop said SOI layer, wherein said localized oxide region is self-aligned with the gate region. A method for forming the inventive MOSFET is also provided comprising forming a dummy gate region atop a substrate; implanting oxide forming dopant through said dummy gate to create a localized oxide region in a portion of the substrate aligned to the dummy gate region that thins a channel region; forming source/drain extension regions abutting said channel region; and replacing the dummy gate with a gate conductor.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 11, 2006
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Bruce B. Doris, Meikei Ieong, Devendra K. Sadana
  • Publication number: 20060145264
    Abstract: A semiconductor structure having improved carrier mobility is provided. The semiconductor structures includes a hybrid oriented semiconductor substrate having at least two planar surfaces of different crystallographic orientation, and at least one CMOS device located on each of the planar surfaces of different crystallographic orientation, wherein each CMOS device has a stressed channel. The present invention also provides methods of fabricating the same. In general terms, the inventive method includes providing a hybrid oriented substrate having at least two planar surfaces of different crystallographic orientation, and forming at least one CMOS device on each of the planar surfaces of different crystallographic orientation, wherein each CMOS device has a stressed channel.
    Type: Application
    Filed: January 5, 2005
    Publication date: July 6, 2006
    Applicant: INTERNAIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dureseti Chidambarrao, Judson Holt, Meikei Ieong, Oiging Ouyang, Siddhartha Panda
  • Publication number: 20060108643
    Abstract: A method in which semiconductor-to-semiconductor direct wafer bonding is employed to provide a hybrid substrate having semiconductor layers of different crystallographic orientations that are separated by a conductive interface is provided. Also provided are the hybrid substrate produced by the method as well as using the direct bonding method to provide an integrated semiconductor structure in which various CMOS devices are built upon a surface orientation that enhances device performance.
    Type: Application
    Filed: January 9, 2006
    Publication date: May 25, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Meikei Ieong, Alexander Reznicek, Min Yang
  • Publication number: 20060105507
    Abstract: A method of forming a hybrid SOI substrate comprising an upper Si-containing layer and a lower Si-containing layer, wherein the upper Si-containing layer and the lower Si-containing layer have different crystallographic orientations. In accordance with the present invention, the buried insulating region may be located within one of the Si-containing layers or through an interface located between the two Si-containing layers.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Meikei Ieong, Devendra Sadana, Ghavam Shahidi
  • Patent number: 7041538
    Abstract: A high-performance recessed channel CMOS device including an SOI layer having a recessed channel region and adjoining extension implant regions and optional halo implant regions; and at least one gate region present atop the SOI layer and a method for fabricating the same are provided. The adjoining extension and optional halo implant regions have an abrupt lateral profile and are located beneath said gate region.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: May 9, 2006
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Omer H. Dokumaci, Thomas S. Kanarsky, Victor Ku
  • Patent number: 7023057
    Abstract: A method in which semiconductor-to-semiconductor direct wafer bonding is employed to provide a hybrid substrate having semiconductor layers of different crystallographic orientations that are separated by a conductive or insulating interface is provided. Also provided are the hybrid substrate produced by the method as well as using the direct bonding method to provide an integrated semiconductor structure in which various CMOS devices are built upon a surface orientation that enhances device performance.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Alexander Reznicek, Min Yang
  • Patent number: 7023055
    Abstract: A method in which semiconductor-to-semiconductor direct wafer bonding is employed to provide a hybrid substrate having semiconductor layers of different crystallographic orientations that are separated by a conductive interface is provided. Also provided are the hybrid substrate produced by the method as well as using the direct bonding method to provide an integrated semiconductor structure in which various CMOS devices are built upon a surface orientation that enhances device performance.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Alexander Reznicek, Min Yang
  • Patent number: 7018891
    Abstract: Thin silicon channel SOI devices provide the advantage of sharper sub-threshold slope, high mobility, and better short-channel effect control but exhibit a typical disadvantage of increased series resistance. This high series resistance is avoided by using a raised source-drain (RSD), and expanding the source drain on the pFET transistor in the CMOS pair using selective epitaxial Si growth which is decoupled between nFETs and pFETs. By doing so, the series resistance is improved, the extensions are implanted after RSD formation and thus not exposed to the high thermal budget of the RSD process while the pFET and nFET can achieve independent effective offsets.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: March 28, 2006
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, MeiKei Ieong, Thomas S. Kanarsky
  • Publication number: 20060060925
    Abstract: Semiconductor structure and method to simultaneously achieve optimal stress type and current flow for both nFET and pFET devices, and for gates orientated in one direction, are disclosed. One embodiment of the method includes bonding a first wafer having a first surface direction and a first surface orientation atop a second wafer having a different second surface orientation and a different second surface direction; forming an opening through the first wafer to the second wafer; and forming a region in the opening coplanar with a surface of the first wafer, wherein the region has the second surface orientation and the second surface direction. The semiconductor device structure includes at least two active regions having different surface directions, each active region including one of a plurality of nFETs and a plurality of pFETs, and wherein a gate electrode orientation is such that the nFETs and the pFETs are substantially parallel to each other.
    Type: Application
    Filed: September 17, 2004
    Publication date: March 23, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Oleg Gluschenkov, MeiKei Ieong, Effendi Leobandung, Huilong Zhu
  • Patent number: 7002214
    Abstract: A method of manufacture of a Super Steep Retrograde Well Field Effect Transistor device starts with an SOI layer formed on a substrate, e.g. a buried oxide layer. Thin the SOI layer to form an ultra-thin SOI layer. Form an isolation trench separating the SOI layer into N and P ground plane regions. Dope the N and P ground plane regions formed from the SOI layer with high levels of N-type and P-type dopant. Form semiconductor channel regions above the N and P ground plane regions. Form FET source and drain regions and gate electrode stacks above the channel regions. Optionally form a diffusion retarding layer between the SOI ground plane regions and the channel regions.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: February 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Judson R. Holt, MeiKei Ieong, Renee T. Mo, Zhibin Ren, Ghavam G. Shahidi
  • Publication number: 20060033110
    Abstract: A three dimensional (3D) integrated circuit (IC), 3D IC chip and method of fabricating a 3D IC chip. The chip includes multiple layers of circuits, e.g., silicon insulator (SOI) CMOS IC layers, each including circuit elements. The layers may be formed in parallel and one layer attached to another to form a laminated 3D chip.
    Type: Application
    Filed: August 16, 2004
    Publication date: February 16, 2006
    Inventors: Syed Alam, Ibrahim Elfadel, Kathryn Guarini, Meikei Ieong, Prabhakar Kudva, David Kung, Mark Lavin, Arifur Rahman
  • Publication number: 20060022270
    Abstract: A method of manufacture of a Super Steep Retrograde Well Field Effect Transistor device starts with an SOI layer formed on a substrate, e.g. a buried oxide layer. Thin the SOI layer to form an ultra-thin SOI layer. Form an isolation trench separating the SOI layer into N and P ground plane regions. Dope the N and P ground plane regions formed from the SOI layer with high levels of N-type and P-type dopant. Form semiconductor channel regions above the N and P ground plane regions. Form FET source and drain regions and gate electrode stacks above the channel regions. Optionally form a diffusion retarding layer between the SOI ground plane regions and the channel regions.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diane Boyd, Judson Holt, MeiKei Ieong, Renee Mo, Zhibin Ren, Ghavam Shahidi
  • Publication number: 20060003554
    Abstract: The present invention provides a method of forming a substantially planar SOI substrate having multiple crystallographic orientations including the steps of providing a multiple orientation surface atop a single orientation layer, the multiple orientation surface comprising a first device region contacting and having a same crystal orientation as the single orientation layer, and a second device region separated from the first device region and the single orientation layer by an insulating material, wherein the first device region and the second device region have different crystal orientations; producing a damaged interface in the single orientation layer; bonding a wafer to the multiple orientation surface; separating the single orientation layer at the damaged interface; wherein a damaged surface of said single orientation layer remains; and planarizing the damaged surface until a surface of the first device region is substantially coplanar to a surface of the second device region.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Bruce Doris, Meikei Ieong, Philip Oldiges, Min Yang
  • Publication number: 20060001095
    Abstract: A method of creating ultra tin body fully-depleted SOI MOSFETs in which the SOI thickness changes with gate-length variations thereby minimizing the threshold voltage variations that are typically caused by SOI thickness and gate-length variations is provided. The method of present invention uses a replacement gate process in which nitrogen is implanted to selectively retard oxidation during formation of a recessed channel. A self-limited chemical oxide removal (COR) processing step can be used to improve the control in the recessed channel step. If the channel is doped, the inventive method is designed such that the thickness of the SOI layer is increased with shorter channel length. If the channel is undoped or counter-doped, the inventive method is designed such that the thickness of the SOI layer is decreased with shorter channel length.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Meikei Ieong, Zhibin Ren, Paul Solomon, Min Yang
  • Publication number: 20050285097
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Application
    Filed: June 24, 2004
    Publication date: December 29, 2005
    Inventors: Huiling Shang, Meikei Ieong, Jack Chu, Kathryn Guarini
  • Publication number: 20050280121
    Abstract: A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 22, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Meikei Ieong, Edward Nowak, Min Yang
  • Publication number: 20050263831
    Abstract: The present invention provides an integrated semiconductor circuit containing a planar single gated FET and a FinFET located on the same SOI substrate. Specifically, the integrated semiconductor circuit includes a FinFET and a planar single gated FET located atop a buried insulating layer of an silicon-on-insulator substrate, the planar single gated FET is located on a surface of a patterned top semiconductor layer of the silicon-on-insulator substrate and the FinFET has a vertical channel that is perpendicular to the planar single gated FET. A method of forming a method such an integrated circuit is also provided. In the method, resist imaging and a patterned hard mask are used in trimming the width of the FinFET active device region and subsequent resist imaging and etching are used in thinning the thickness of the FET device area. The trimmed active FinFET device region is formed such that it lies perpendicular to the thinned planar single gated FET device region.
    Type: Application
    Filed: May 4, 2005
    Publication date: December 1, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Diane Boyd, Meikei Ieong, Thomas Kanarsky, Jakub Kedzierski, Min Yang
  • Publication number: 20050263797
    Abstract: A double-gate field effect transistor (DGFET) structure and method of forming such a structure in which the parasitic capacitance under the source/drain regions is substantially reduced are provided. Two new means to reduce the parasitic capacitance under the source/drain regions are provided. Firstly, the silicon area outside the gate is converted to oxide while protecting a silicon ledge adjacent to the gate with a first spacer. The oxidation can be facilitated using a self-aligned oxygen implant, or implant of some other species. Secondly, the first spacer is removed, replaced with a second spacer, and a new silicon source/drain area is grown by employing lateral selective epi overgrowth and using the now exposed silicon ledge as a seed, over the self-aligned oxide isolation region. This achieves a low-capacitance to the back-plane, while retaining control of the threshold voltages.
    Type: Application
    Filed: June 7, 2005
    Publication date: December 1, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin Chan, Guy Cohen, Meikei Ieong, Ronnen Roy, Paul Solomon, Min Yang