Patents by Inventor Melvin Robert Jackson

Melvin Robert Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7360437
    Abstract: A device for measuring at least one property of a material sample is disclosed. The device includes at least one sensor element which is formed by a direct-write technique. The device can be an instrument for measuring strain in the sample, or for measuring other properties or attributes of a sample, such as temperature. A turbine engine disk on which components of property-measuring devices have been direct-written is also described. Methods of forming sensor elements for property-measuring devices are disclosed.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: April 22, 2008
    Assignee: General Electric Company
    Inventors: Canan Uslu Hardwicke, Melvin Robert Jackson
  • Patent number: 7358674
    Abstract: A conductive element comprises a metal core and a coating, wherein the coating comprises at least one layer of aluminum, an aluminum alloy, an aluminide, silicon, a silicon alloy, a silicide, and combinations thereof, and wherein the at least one layer has a predetermined thickness. A method of making a conductive element comprises depositing a coating material on a metal core to form a coated metal core and heating the coated metal core to a predetermined temperature to form at least one layer of aluminum, an aluminum alloy, an aluminide, silicon, a silicon alloy, a silicide, and combinations thereof.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: April 15, 2008
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Bruce Alan Knudsen, James Anthony Brewer, Melvin Robert Jackson
  • Patent number: 7351290
    Abstract: A robotic pen includes a computer numerically controlled machine having a multiaxis stage for mounting a workpiece, and a cooperating elevator which translates relative thereto. A pen tip is rotatably mounted to the elevator. And, a dispenser is joined in flow communication with the pen tip for ejecting a stream of material atop the workpiece as the workpiece moves relative thereto for maintaining a substantially constant gap between said pen tip and the workpiece during relative movement therebetween.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: April 1, 2008
    Assignee: General Electric Company
    Inventors: Stephen Francis Rutkowski, Canan Uslu Hardwicke, Michael Francis Xavier Gigliotti, Melvin Robert Jackson
  • Patent number: 7329471
    Abstract: A solid oxide fuel cell comprises at least one hollow manifold, an anode, an electrolyte, and a cathode. The at least one hollow manifold comprises a wall that defines a chamber therein. A plurality of openings extending through, such that the plurality of openings are in flow communication with the chamber. The anode is formed on an exterior surface of the wall. The electrolyte is deposited on the anode, and the cathode is deposited on the electrolyte.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: February 12, 2008
    Assignee: General Electric Company
    Inventors: Richard Scott Bourgeois, Richard Louis Hart, Melvin Robert Jackson, Chang Wei, Canan Uslu Hardwicke, Michael Francis Xavier Gigliotti, Jr.
  • Publication number: 20060256833
    Abstract: A method for evaluating the thermal exposure of a selected metal component which has been exposed to changing temperature conditions is described. The voltage distribution on a surface of the metal component, or on a metallic layer which lies over the component, is first obtained. The voltage distribution usually results from a compositional change in the metal component. The voltage distribution is then compared to a thermal exposure-voltage model which expresses voltage distribution as a function of exposure time and exposure temperature for a reference standard corresponding to the metal component. In this manner, the thermal exposure of the selected component can be obtained. A related device for evaluating the thermal exposure of a selected metal component is also described.
    Type: Application
    Filed: May 10, 2005
    Publication date: November 16, 2006
    Inventors: Liang Jiang, Lawrence Bernard Kool, Melvin Robert Jackson, Canan Uslu Hardwicke, Ji-Cheng Zhao, Ann Melinda Ritter, Ching-Pang Lee
  • Patent number: 7004622
    Abstract: A system for measuring a condition of a turbine engine component comprises an assemblage of at least a film comprising an electrically conducting material disposed on a film of an electrically non-conducting material, the assemblage being disposed on a surface of the turbine engine component without removing material from the turbine engine component to compensate for thickness of at least one of the films. The electrically non-conducting material has a thermal expansion coefficient such that each of the films remains adhered to adjacent films through at least one cycle of extreme operating temperature. In addition, communication links can be provided to transmit the measurement representing the condition of the turbine engine to a remote user.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: February 28, 2006
    Assignee: General Electric Company
    Inventors: Canan Uslu Hardwicke, John William Devitt, Melvin Robert Jackson, Yuk-Chiu Lau
  • Patent number: 6982059
    Abstract: An alloy and a gas turbine engine component comprising an alloy are presented, with the alloy comprising: palladium, in an amount ranging from about 1 atomic percent to about 41 atomic percent; platinum, in an amount that is dependent upon the amount of palladium, such that a. for the amount of palladium ranging from about 1 atomic percent to about 14 atomic percent, the platinum is present up to about an amount defined by the formula (40+X) atomic percent, wherein X is the amount in atomic percent of the palladium, and b. for the amount of palladium ranging from about 15 atomic percent up to about 41 atomic percent, the platinum is present in an amount up to about 54 atomic percent; and the balance comprising rhodium, wherein the rhodium is present in an amount of at least 24 atomic percent; wherein the alloy comprises a microstructure that is essentially free of L12-structured phase at a temperature greater than about 1000° C.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 3, 2006
    Assignee: General Electric Company
    Inventors: Jiang Liang, Melvin Robert Jackson, Charles Gitahi Mukira, Mark Daniel Gorman
  • Patent number: 6982123
    Abstract: A nickel-base superalloy article, such as a gas turbine stationary flowpath shroud that has previously been in service, is repaired by applying a restoration coating to a surface of the article. The restoration coating is applied by providing a precursor mixture, wherein the precursor mixture has no more than about 15 weight percent chromium and no more than about 0.01 percent yttrium, and wherein the precursor mixture includes a higher-melting-point alloy component and a lower-melting-point alloy component. The precursor mixture is applied to the surface of the article, in a form such as a preform of the alloy components. The article with the precursor mixture applied to the surface thereof is heated to a sufficiently high temperature to melt the lower-melting-point alloy component, thereby forming the restoration coating on the surface of the article.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: January 3, 2006
    Assignee: General Electric Company
    Inventors: David Edwin Budinger, Brent Ross Tholke, Matthew Nicklus Miller, Warren Davis Grossklaus, Jr., Joshua Leigh Miller, Melvin Robert Jackson
  • Patent number: 6974636
    Abstract: A turbine engine component comprising a substrate made of a nickel-base or cobalt-base superalloy and a protective coating overlying the substrate, the coating formed by electroplating at least two platinum group metals selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium. The protective coating is typically heat treated to increase homogeneity of the coating and adherence with the substrate. The component typically further comprises a ceramic thermal barrier coating overlying the protective coating. Also disclosed are methods for forming the protective coating on the turbine engine component by electroplating the platinum group metals.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: December 13, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Mark Daniel Gorman, Melvin Robert Jackson, Ji-Cheng Zhao
  • Patent number: 6921586
    Abstract: A coating system for an article comprising a substrate formed of a metal alloy that is prone to the formation of a deleterious secondary reaction zone (SRZ) as a result of containing more than three weight percent rhenium and at least one additional refractory metal. The coating system comprises an aluminum-containing overlay coating and a diffusion barrier coating between the overlay coating and the substrate. The diffusion barrier coating consists of, in atomic percent, about 20% to about 90% ruthenium, about 2% to about 60% chromium, optionally up to about 50% aluminum, optionally up to about 20% of a platinum-group metal, and the balance at least one of nickel, cobalt, and iron and incidental impurities. The diffusion barrier coating sufficiently inhibits diffusion of aluminum from the overlay coating into the substrate, such that the substrate remains essentially free of SRZ.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: July 26, 2005
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Jeffrey Allan Pfaendtner, Christine Govern, Melvin Robert Jackson
  • Patent number: 6913655
    Abstract: A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: July 5, 2005
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Patent number: 6908288
    Abstract: Methods for repairing and manufacturing a gas turbine blade, and the gas turbine blade repaired and manufactured with such methods are presented with, for example, the repair method comprising providing a gas turbine blade, the blade comprising a blade tip and a blade body; removing at least one portion of the blade tip; providing at least one freestanding tip insert; and disposing the at least one tip insert onto the gas turbine blade body such that the at least one tip insert replaces the at least one removed portion of the blade tip.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: June 21, 2005
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Aaron Todd Frost, Shyh-Chin Huang, Charles Gitahi Mukira, Thomas Robert Raber, Raymond Alan White
  • Patent number: 6905559
    Abstract: A composition of matter is about 1 to about 3 percent rhenium, from about 6 to about 9 percent aluminum, from 0 to about 0.5 percent titanium, from about 4 to about 6 percent tantalum, from about 12.5 to about 15 percent chromium, from about 3 to about 10 percent cobalt, from about 2 to about 5 percent tungsten, from 0 to about 0.2 percent hafnium, from 0 to about 1 percent silicon, from 0 to about 0.25 percent molybdenum, from 0 to about 0.25 percent niobium, balance nickel and minor elements. The composition is preferably made into a substantially single crystal article, such as a component of a gas turbine engine.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: June 14, 2005
    Assignee: General Electric Company
    Inventors: Kevin Swayne O'Hara, William Scott Walston, Charles Gitahi Mukira, Melvin Robert Jackson
  • Patent number: 6861157
    Abstract: Articles for use in a high-temperature, oxidative environment, methods for manufacturing such articles, and a material system for protecting articles in such an environment are provided where, for example, one article comprises a substrate and a protective layer disposed over the substrate, the protective layer comprising at least about 60 atomic percent of a metal selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 1, 2005
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6849299
    Abstract: A method of introducing small amounts of a refractory element into a vapor deposition coating. A second material (30), containing at least two elements which are desired to be deposited as a coating on a base material, has placed over it a first material (20) substantially comprising such two elements and a refractory element. The first material (20) is adapted to permit transport of the at least two elements in the second material (30) through the first material (20) when the first (20) and second (30) material are in a molten state and in touching contact with the other so as to permit evaporation of the two elements and the refractory element from an exposed surface. Heat is supplied to the first (20) and second (30) materials to permit evaporation of the at least two elements of second material (30) and the refractory element in the first material (20), and the resulting vapors are condensed as a deposit on a base material (50).
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Reed Roeder Corderman, Melvin Robert Jackson, Richard Arthur Nardi, Jr.
  • Patent number: 6837687
    Abstract: An airfoil body having a first wall including a plurality of ribs. An outer wall formed of a high temperature foil is attached to the ribs so as to form a plurality of channels. The first wall is protected from hot flowpath gases by the outer wall and by cooling air flowing through the channels.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 4, 2005
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno
  • Patent number: 6838190
    Abstract: A protected article includes a nickel-base superalloy substrate, an interlayer overlying the substrate, and a protective layer overlying the interlayer. The protective layer has a composition comprising at least one of rhodium, platinum, palladium, and ruthenium. In one composition, palladium is present in an amount of from about 1 to about 41 atomic percent; platinum is present in an amount of about (40+atomic percent palladium) atomic percent for palladium ranging from about 1 atomic percent to about 14 atomic percent and up to about 54 atomic percent for palladium ranging from about 15 atomic percent up to about 41 atomic percent; rhodium is present in an amount of at least about 24 atomic percent; zirconium, hafnium, titanium, and mixtures thereof are present in an amount of from zero up to about 5 atomic percent; and ruthenium is present in an amount of from zero up to about 5 atomic percent, balance impurities.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 4, 2005
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno, Gary Edward Trewiler, Mark Daniel Gorman
  • Publication number: 20040206803
    Abstract: A combinatorial process for production of material libraries from a single sample, comprising forming a diffusion multiple in the single sample, wherein the diffusion multiple comprises a plurality of interdiffusion regions at interfacial locations of dissimilar metals, metal oxides, or alloys, and wherein the diffusion multiple comprises at least three layers of the metals, non-metals, metal oxides, or alloys; and evaluating properties of the diffusion multiple as a function of composition at about the interdiffusion regions.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Publication number: 20040142204
    Abstract: A coating system for an article comprising a substrate formed of a metal alloy that is prone to the formation of a deleterious secondary reaction zone (SRZ) as a result of containing more than three weight percent rhenium and at least one additional refractory metal. The coating system comprises an aluminum-containing overlay coating and a diffusion barrier coating between the overlay coating and the substrate. The diffusion barrier coating consists of, in atomic percent, about 20% to about 90% ruthenium, about 2% to about 60% chromium, optionally up to about 50% aluminum, optionally up to about 20% of a platinum-group metal, and the balance at least one of nickel, cobalt, and iron and incidental impurities. The diffusion barrier coating sufficiently inhibits diffusion of aluminum from the overlay coating into the substrate, such that the substrate remains essentially free of SRZ.
    Type: Application
    Filed: October 31, 2003
    Publication date: July 22, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ji-Cheng Zhao, Jeffrey Allan Pfaendtner, Christine Govern, Melvin Robert Jackson
  • Publication number: 20040121182
    Abstract: A method to apply a material layer, comprises selecting a first material with a first melting temperature and a second material composition having a second melting temperature at least 40° C. lower than the first melting temperature; forming a suspension comprising the first material and second material composition in a carrier medium; depositing the suspension onto a surface to form a layer; and controllably heating the layer to a temperature at least 20° C. above the melting temperature of the second material composition but no higher than 20° C. below the melting temperature of the first material, to dissolve at least some of the first material in melted second material composition. A composition of matter, comprises a first material with a first melting temperature and a second material composition having a second melting temperature at least 40° C. lower than the first melting temperature and a carrier medium.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Canan Uslu Hardwicke, Melvin Robert Jackson, Michael Francis Xavier Gigliotti,