Patents by Inventor Melvin Robert Jackson

Melvin Robert Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030079810
    Abstract: An alloy comprising rhodium, aluminum, and chromium, wherein a microstructure of the alloy comprises a face-centered-cubic phase and a B2-structured phase and is essentially free of an L12-structured phase at temperatures greater than about 1000° C., and a gas turbine engine component comprising the alloy.
    Type: Application
    Filed: October 24, 2001
    Publication date: May 1, 2003
    Inventors: Melvin Robert Jackson, Canan Uslu Hardwicke, Ji-Cheng Zhao, Charles Gitahi Mukira
  • Patent number: 6554920
    Abstract: An alloy and repair material comprising the alloy, articles comprising the alloy and repair material, and methods for repairing articles including provision of the alloy as repair material are described, with the alloy comprising ruthenium, nickel, aluminum, and chromium, wherein a microstructure of the alloy is essentially free of an L12-structured phase at temperatures greater than about 1000° C. and comprises an A3-structured phase and up to about 40 volume percent of a B2-structured phase.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: April 29, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Canan Uslu Hardwicke, Ji-Cheng Zhao, Charles Gitahi Mukira
  • Patent number: 6551063
    Abstract: There is provided a turbine airfoil having a plurality of pressure side bleed slots through which cooling air is discharged. A portion of the slot openings are covered with an outer wall which comprises a high temperature foil.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: April 22, 2003
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno
  • Publication number: 20030066578
    Abstract: A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Applicant: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Publication number: 20030054194
    Abstract: An environmentally resistant coating comprising silicon, titanium, chromium, and a balance of niobium and molybdenum for turbine components formed from molybdenum silicide-based composites. The turbine component may further include a thermal barrier coating disposed upon an outer surface of the environmentally resistant coating comprising zirconia, stabilized zirconia, zircon, mullite, and combinations thereof. The molybdenum silicide-based composite turbine component coated with the environmentally resistant coating and thermal barrier coating is resistant to oxidation at temperatures in the range from about 2000° F. to about 2600° F. and to pesting at temperatures in the range from about 1000° F. to about 1800° F.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 20, 2003
    Inventors: Ji-Cheng Zhao, Bernard Patrick Bewlay, Melvin Robert Jackson
  • Publication number: 20030047139
    Abstract: A method of introducing small amounts of a refractory element into a vapor deposition coating. A second material (30), containing at least two elements which are desired to be deposited as a coating on a base material, has placed over it a first material (20) substantially comprising such two elements and a refractory element. The first material (20) is adapted to permit transport of the at least two elements in the second material (30) through the first material (20) when the first (20) and second (30) material are in a molten state and in touching contact with the other so as to permit evaporation of the two elements and the refractory element from an exposed surface. Heat is supplied to the first (20) and second (30) materials to permit evaporation of the at least two elements of second material (30) and the refractory element in the first material (20), and the resulting vapors are condensed as a deposit on a base material (50).
    Type: Application
    Filed: October 16, 2002
    Publication date: March 13, 2003
    Inventors: Reed Roeder Corderman, Melvin Robert Jackson, Richard Arthur Nardi
  • Publication number: 20030049156
    Abstract: An alloy and a gas turbine engine component comprising an alloy are presented, with the alloy comprising from about three atomic percent to about nine atomic percent of at least one precipitation-strengthening metal selected from the group consisting of zirconium, niobium, tantalum, titanium, hafnium, and mixtures thereof; from about one atomic percent to about five atomic percent ruthenium; and the balance rhodium; the alloy further comprising a face-centered-cubic phase and an L12-structured phase.
    Type: Application
    Filed: January 18, 2002
    Publication date: March 13, 2003
    Applicant: General Electric Company
    Inventors: Melvin Robert Jackson, Charles Gitahi Mukira
  • Publication number: 20030034379
    Abstract: A method of repairing cracks, imperfections, and the like in a cast article of superalloy composition having a directionally oriented microstructure and growth axis. An aperture, usually frustois created in the article in the location of the crack or imperfection. A plug, having a second directionally oriented microstructure having a directional microstructure with a growth axis and a superalloy composition substantially identical to the article superalloy composition, is created. Such plug further possesses an inner end, an outer end, and a surface therebetween. The plug is inserted into the aperture whereby the plug growth axis is oriented in alignment with the article growth axis. Bonding material is applied between the surfaces of the plug and the aperture, before or after insertion of the plug into the aperture. The article is thereafter heated such that the bonding material joins the surface of the plug and the aperture.
    Type: Application
    Filed: August 16, 2001
    Publication date: February 20, 2003
    Inventors: Melvin Robert Jackson, Michael Francis Xavier Gigliotti, Ann Melinda Ritter, Lee Cranford Perocchi, Robert John Zabala
  • Patent number: 6521356
    Abstract: An environmentally resistant coating for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system having turbine components comprising at least one Nb-based RMIC, the environmentally resistant coating disposed on a surface of the Nb-based RMIC, and a thermal barrier coating disposed on an outer surface of the environmentally resistant coating. Methods of making a turbine component having the environmentally resistant coating and coating a Nb-based RMIC substrate with the environmentally resistant coating are also disclosed.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: February 18, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Publication number: 20030002981
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises one of germanium and silicon, and one of chromium, titanium, gold, aluminum, palladium, platinum, and nickel. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
    Type: Application
    Filed: May 30, 2001
    Publication date: January 2, 2003
    Applicant: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Publication number: 20030002988
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component.
    Type: Application
    Filed: May 30, 2001
    Publication date: January 2, 2003
    Applicant: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Publication number: 20020197502
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Application
    Filed: June 11, 2001
    Publication date: December 26, 2002
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Publication number: 20020197152
    Abstract: A gas turbine airfoil and methods for manufacturing and repair of an airfoil, the airfoil comprising a wall, the wall defining the perimeter of the airfoil and comprising a leading edge section and a trailing edge section, wherein a majority of the surface area of the wall comprises a first material, the first material having an oxidation resistance and a melting temperature, and at least one portion of the wall comprises a second material, the second material having an oxidation resistance that is greater than the oxidation resistance of the first material and a melting temperature that is at least about 83 degrees Celsius (about 150 degrees Fahrenheit) greater than the melting temperature of the first material, the at least one portion of the wall located in at least one section of the wall selected from the group consisting of the leading edge section and the trailing edge section.
    Type: Application
    Filed: June 26, 2001
    Publication date: December 26, 2002
    Inventors: Melvin Robert Jackson, Charles Gitahi Mukira
  • Patent number: 6497968
    Abstract: An environmentally resistant coating comprising silicon, titanium, chromium, and a balance of niobium and molybdenum for turbine components formed from molybdenum silicide-based composites. The turbine component may further include a thermal barrier coating disposed upon an outer surface of the environmentally resistant coating comprising zirconia, stabilized zirconia, zircon, mullite, and combinations thereof. The molybdenum silicide-based composite turbine component coated with the environmentally resistant coating and thermal barrier coating is resistant to oxidation at temperatures in the range from about 2000° F. to about 2600° F. and to pesting at temperatures in the range from about 1000° F. to about 1800° F.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: December 24, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Bernard Patrick Bewlay, Melvin Robert Jackson
  • Publication number: 20020192491
    Abstract: An environmentally resistant coating for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentallly resistant coating comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system having turbine components comprising at least one Nb-based RMIC, the environmentally resistant coating disposed on a surface of the Nb-based RMIC, and a thermal barrier coating disposed on an outer surface of the environmentally resistant coating. Methods of making a turbine component having the environmentally resistant coating and coating a Nb-based RMIC substrate with the environmentally resistant coating are also disclosed.
    Type: Application
    Filed: February 2, 2001
    Publication date: December 19, 2002
    Applicant: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Publication number: 20020185524
    Abstract: An article, such as an airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises a first metallic element and a second metallic element, wherein the first metallic element is one of titanium, palladium, zirconium, niobium, and hafnium, and wherein the second metallic element is one of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the first metallic element being different from the second metallic element.
    Type: Application
    Filed: May 30, 2001
    Publication date: December 12, 2002
    Applicant: Gerneral Electric Company with cover sheet
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Publication number: 20020182070
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined at a bonded region to the first piece by a diffusion bond. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite. The second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The diffusion bond is formed from a first metallic element disposed on a first surface of the first piece and a second metallic element disposed on at least one of the first surface and a second surface of the second piece, the second surface contacting the first surface, wherein the first and second metal form a composition having a melting temperature less than about 1400° C. This abstract is submitted in compliance with 37 C.F.R. 1.
    Type: Application
    Filed: May 30, 2001
    Publication date: December 5, 2002
    Applicant: General Electric Company
    Inventors: Bernard Patrick Bewlay, Melvin Robert Jackson, Ji-Cheng Zhao
  • Patent number: 6475642
    Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia
  • Patent number: 6468367
    Abstract: A superalloy weld composition, includes: about 2 to about 5 wt % Co; about 5 to about 15 wt % Cr; about 7 to about 10 wt % Al; about 4 to about 6 wt % Ta; about 0.5 to about 1.5 wt % Si; about 0.1 to about 0.5 wt % Hf; up to about 0.05 wt % C; up to about 0.05 wt % B; about 1.0 to about 2.0 Re; about 3 to about 4.5 wt % W; and balance Ni.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: October 22, 2002
    Assignee: General Electric Company
    Inventors: Charles Gitahi Mukira, Melvin Robert Jackson, Jon Conrad Schaeffer, William Scott Walston, Thomas Froats Broderick
  • Patent number: 6465755
    Abstract: A process for the manufacture of repair material. The repair material is ductile and readily mechanically deformed and can be used in the repair of turbine components. The process comprises providing a directionally solidified material, cold-swaging the directionally solidified material, and heat treating the cold-swaged material into the repair material. The repair material, after the steps of cold-swaging and heat treatment, comprises a microstructure that is essentially free from cracks, for repairing the turbine component. The invention also sets forth methods for repair of articles, such as turbine components, using the repair material, and a turbine component repaired using the repair material.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: October 15, 2002
    Assignee: General Electric Company
    Inventors: John Raymond Hughes, Melvin Robert Jackson, Charles Gitahi Mukira, Allan Richard Susi, Raymond Alan White