Patents by Inventor Meng H. Lean

Meng H. Lean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7188934
    Abstract: Various systems and techniques are disclosed for stopping, selectively controlling, and optimizing a flow of particles in a flowing stream. The systems and techniques utilize a multi-electrode assembly and various voltage waveforms applied to those electrodes. The particles flow past or near the electrode assembly and their flow is controlled by the configuration and arrangement of the electrodes and the voltage waveforms applied thereto. An additional strategy for countering particle leakage flow is also described.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: March 13, 2007
    Assignee: Xerox Corporation
    Inventors: Meng H. Lean, John J. Ricciardelli, Osman T. Polatkan, Michael J. Savino, Armin R. Völkel
  • Patent number: 7176600
    Abstract: A circuit provides energy to a plurality of piezoelectric diaphragm structures formed in a two-dimensional array. Each piezoelectric diaphragm structure includes a piezoelectric element in operational contact with at least a first side electrode and a second side electrode. A switching system includes a first connection for a first power source, for application of power to the first side electrode and a second connection for a second power source, for application of power to the second side electrode. In a first state, power appropriate for performing a poling operation of the piezoelectric material is available for application to the first electrode, and the second electrode, and in a second state, power appropriate to activate the piezoelectric material to cause operational movement of the poled piezoelectric diaphragm structure is available for application to the first electrode and the second electrode.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 13, 2007
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Steven A. Buhler, John S. Fitch, Meng H. Lean, Karl A. Littau
  • Patent number: 7163611
    Abstract: Several traveling wave grid systems are disclosed that may be used to concentrate and form highly localized regions of bio-agents or other charged species. In addition, specific detection systems are described that enable currently available detectors and sensors, including those to be developed in the future, to be used for measuring the presence and concentration of certain bio-agents or charged particles, which otherwise are present at concentrations too low to readily detect or measure.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 16, 2007
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Armin R. Völkel, Meng H. Lean, Huangpin Ben Hsieh, Jurgen Daniel
  • Patent number: 7156970
    Abstract: Various traveling wave grids and electrophoretic systems, and electrode assemblies using such grids, are disclosed. A configuration in which a voltage potential is used to load a biomolecule sample against a grid is disclosed. A unique strategy of using multiple, reconfigurable grids in such systems is also described. The strategy involves initially conducting a broad protein separation and then selectively tailoring one or more grids, and conducting one or more secondary processing operations. Related strategies and specific methods are additionally disclosed for separating samples of biomolecules and components thereof using the noted systems, assemblies, and grids.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: January 2, 2007
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, John S. Fitch, Armin R. Völkel, Bryan Preas, Scott Elrod, Richard H. Bruce, Eric Peeters, Frank Torres, Michael Chabinyc
  • Patent number: 7150813
    Abstract: Various gel electrophoretic assemblies and techniques are disclosed for providing unique isoelectric focusing (IEF) strategies. Several particular systems, assemblies and methods are provided that significantly reduce processing time, enable the use of reduced operating voltages, and produce analytical results with improved resolution.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: December 19, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, John S. Fitch, Armin R. Völkel, Bryan Preas, Scott Elrod, Richard H. Bruce, Eric Peeters, Frank Torres, Michael Chabinyc
  • Patent number: 7126134
    Abstract: A sample manipulator that utilizes electrostatic traveling waves to selectively displace one or more samples deposited on its face is disclosed. The sample manipulator enables an operator to perform a wide variety of processes upon the deposited samples. Also disclosed are strategies for separating two or more samples, focusing a sample, and passing a reagent through a sample, all conducted on the face of the sample manipulator.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: October 24, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Meng H. Lean, Francisco E. Torres, Huangpin Ben Hsieh, Armin R. Völkel, Bryan Preas, Scott A. Elrod, John S. Fitch, Richard H. Bruce
  • Patent number: 7121859
    Abstract: A data transmission interconnect assembly capable of transmission speeds in excess of 40 Gbps in which, for example, a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring interface members are formed on the contact structure pressed against the cables to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press the contact structure, having the microspring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: October 17, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Koenraad F. Van Schuylenbergh, Armin R. Völkel, Thomas H. DiStefano, Michel A. Rosa, David K. Fork, Eugene M. Chow, Meng H. Lean
  • Patent number: 7121157
    Abstract: Disclosed is a compact, non-contacting device for collecting samples, and particularly minute quantities of bio-agents or particulates, from a surface. The device vibrates a region of a target surface containing the sample and collects the sample on an electrically charged pin array. The sample can be later released to a detector or other instrumentation for subsequent analysis.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: October 17, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, Armin R. Völkel, Peter Kiesel, Noble Johnson
  • Patent number: 7084555
    Abstract: A multi-electrode piezoelectric diaphragm structure includes a diaphragm, piezoelectric material located on the diaphragm, which is defined as having a first area, and a second area. The first area of the piezoelectric is poled in a first direction, and the second area of the piezoelectric is poled in a second direction. The poled first direction is in a Z-axis of the piezoelectric and the poled second direction is in a Radial axis of the piezoelectric. A first electrode is positioned in the first area, on the first surface, of the piezoelectric. A second electrode is positioned in the second area, on the first surface, of the piezoelectric. A third electrode is located on a second surface of the piezoelectric.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: August 1, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John R. Bachellerie, Steven A. Buhler, John S. Fitch, Meng H. Lean, Karl A. Littau
  • Patent number: 7053532
    Abstract: In accordance with one embodiment of the present application, a piezoelectric diaphragm structure includes a diaphragm, with a piezoelectric material located on the diaphragm. The piezoelectric material is being poled in a radial direction to the piezoelectric material, wherein the poling direction is in-plane with the piezoelectric material. An inter-digitated electrode grid is positioned on a first surface of the piezoelectric material, the inter-digitated electrode grid including a plurality of electrodes configured to selectively receive positive and negative voltage. The application of the positive and negative voltages generate electric fields in the piezoelectric material, at least a portion of which are in-plane with the piezoelectric material, resulting in an actuation of the piezoelectric material, causing a length change of the piezoelectric material in the Radial direction.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: May 30, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Meng H. Lean, Steven A. Buhler, John S. Fitch, Karl A. Littau
  • Patent number: 6969160
    Abstract: A toner gating apparatus for supplying toner through an aperture to a gas channel having a propellant stream. The toner gating apparatus has a traveling wave grid having electrodes. A first gating electrode is located proximate a first side of the aperture. A second gating electrode is located proximate a second side of the aperture. A third gating electrode is located in the gas channel. A first voltage source having a first phase is connected to both the first gating electrode and a first electrode of the travelling wave grid. A second voltage source having a second phase is connected to both the second gating electrode and a second electrode of the travelling wave grid. A third voltage source having a third phase is connected to both the third gating electrode and a third electrode of the travelling wave grid.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 29, 2005
    Assignee: Xerox Corporation
    Inventors: Meng H. Lean, John J. Ricciardelli, Michael J. Savino, Osman T. Polatkan, Fred R. Stolfi, Eric Lindale
  • Patent number: 6966784
    Abstract: A data transmission interconnect assembly (e.g., a router) capable of transmission speeds in excess of 40 Gbps in which a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring contact structures are formed on the cables, or on a contact structure pressed against the cables, to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press a contact structure, having micro spring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 22, 2005
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Koenraad F. Van Schuylenbergh, Armin R. Völkel, Thomas H. DiStefano, Michel A. Rosa, David K. Fork, Eugene M. Chow, Meng H. Lean
  • Patent number: 6924584
    Abstract: A system and method of operation is described which utilizes an array of piezoelectric actuators distributed over the surface of a diaphragm. In one embodiment, the piezoelectric actuator array is used to cause a net motion of the diaphragm equal to the sum of the motions of each individual sub-chamber diaphragm. The system can be used as a sensor where a common motion applied to the sub-chamber diaphragm causes a net charge equal to the sum of the charges on each piezoelectric diaphragm.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: August 2, 2005
    Assignee: Palo Alto Research Center Inc.
    Inventors: Steven A. Buhler, John S. Fitch, Meng H. Lean, Karl A. Littau
  • Publication number: 20040251136
    Abstract: Various gel electrophoretic assemblies and techniques are disclosed for providing unique isoelectric focusing (IEF) strategies. Several particular systems, assemblies and methods are provided that significantly reduce processing time, enable the use of reduced operating voltages, and produce analytical results with improved resolution.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, John S. Fitch, Armin R. Volkel, Bryan Preas, Scott Elrod, Richard H. Bruce, Eric Peeters, Frank Torres, Michael Chabinyc
  • Publication number: 20040251139
    Abstract: An electrophoretic cell configuration and related method are disclosed that employ oppositely directed traveling electrical waves. The waves travel across the cell and samples undergoing separation. Various strategies are used to selectively direct the movement and arrangement of the samples and resulting sample patterns.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, John S. Fitch, Armin R. Volkel, Bryan Preas, Scott Elrod, Richard H. Bruce, Eric Peeters, Frank Torres, Michael Chabinyc
  • Publication number: 20040251135
    Abstract: Various traveling wave grids and electrophoretic systems, and electrode assemblies using such grids, are disclosed. A configuration in which a voltage potential is used to load a biomolecule sample against a grid is disclosed. A unique strategy of using multiple, reconfigurable grids in such systems is also described. The strategy involves initially conducting a broad protein separation and then selectively tailoring one or more grids, and conducting one or more secondary processing operations. Related strategies and specific methods are additionally disclosed for separating samples of biomolecules and components thereof using the noted systems, assemblies, and grids.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Meng H. Lean, Huangpin Ben Hsieh, John S. Fitch, Armin R. Volkel, Bryan Preas, Scott Elrod, Richard H. Bruce, Eric Peeters, Frank Torres, Michael Chabinyc
  • Patent number: 6751865
    Abstract: A method of making a print head is disclosed for use in a marking apparatus in which a propellant stream is passed through a channel and directed toward a substrate. Marking material, such as ink, toner, etc., is controllably introduced into the propellant stream and imparted with sufficient kinetic energy thereby to be made incident upon a substrate. A multiplicity of channels for directing the propellant and marking material allow for high throughput, high resolution marking. Multiple marking materials may be introduced into the channel and mixed therein prior to being made incident on the substrate, or mixed or superimposed on the substrate without re-registration.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: June 22, 2004
    Assignee: Xerox Corporation
    Inventors: Eric Peeters, Jaan Noolandi, Raj B. Apte, Philip D. Floyd, Meng H. Lean, Armin R. Volkel
  • Publication number: 20040113521
    Abstract: A system and method of operation is described which utilizes an array of piezoelectric actuators distributed over the surface of a diaphragm. In one embodiment, the piezoelectric actuator array is used to cause a net motion of the diaphragm equal to the sum of the motions of each individual sub-chamber diaphragm. The system can be used as a sensor where a common motion applied to the sub-chamber diaphragm causes a net charge equal to the sum of the charges on each piezoelectric diaphragm.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: Palo Alto Research Center, Incorporated
    Inventors: Steven A. Buhler, John S. Fitch, Meng H. Lean, Karl A. Littau
  • Patent number: 6523928
    Abstract: A method for treating a substrate is disclosed in which a propellant stream is passed through a channel and directed toward a substrate. Substrate pre-marking or post-marking treatment material is controllably introduced into the propellant stream and imparted with sufficient kinetic energy thereby to be made incident upon a substrate. A multiplicity of channels for directing the propellant and treatment material allow for high throughput, high resolution in-situ treatment. Marking materials and treatment materials may be introduced into the channel and mixed therein prior to being made incident on the substrate, or mixed or superimposed on the substrate without registration. One example is a single-pass, full-color printer.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: February 25, 2003
    Assignee: Xerox Corporation
    Inventors: Eric Peeters, Jaan Noolandi, Raj B. Apte, Philip D. Floyd, Jonathan A. Small, Gregory J. Kovacs, Meng H. Lean, Armin R. Volkel, Steven B. Bolte, An-Chang Shi, Frederick J. Endicott, Gregory B. Anderson, Dan A. Hays, Joel A. Kubby, Warren B. Jackson, Karen A. Moffat, T. Brian McAneney, Richard P. N. Veregin, Maria N. V. McDougall, Danielle C. Boils, Paul D. Szabo
  • Patent number: 6513909
    Abstract: A method of forming and moving ink drops across a gap between a print head and a print medium, or intermediate print medium, in a marking device includes generating an electric field, forming the ink drops adjacent the print head and controlling the electric field. The electric field is generated to extend across the gap. The ink drops are formed in an area adjacent the print head. The electric field is controlled such that an electrical attraction force exerted on the formed ink drops by the electric field is the greatest force acting on the ink drops. The marking device may be incorporated into a transfuse printing system having an intermediate print medium made of one or more materials that allow for lateral dissipation of electrical charge from the incident ink drops.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: February 4, 2003
    Assignee: Xerox Corporation
    Inventors: Scott A. Elrod, Vittorio Castelli, Meng H. Lean, Gregory J. Kovacs, John S. Berkes, Joy Roy, Donald L. Smith, Richard G. Stearns