Patents by Inventor Meng-Ping Kan

Meng-Ping Kan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220200827
    Abstract: A single-chip integrated circuit is disclosed, wherein the single-chip integrated circuit comprises at least one unidirectional communication channel for converting a first electrical signal to a first optical signal and at least one bidirectional communication channel for converting a second electrical signal to a second optical signal and converting a third optical signal to a third electrical signal.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Chia-Hsiou CHEN, Meng-Ping KAN, Chun-An HSIEH
  • Patent number: 10855242
    Abstract: An equalizer system includes at least one equalizer configured to equalize an input signal to generate an equalized input signal; a limiting amplifier coupled to the at least one equalizer, and configured to amplify the equalized input signal to a saturated level to generate an output signal; and a control circuit coupled to the at least one equalizer and the limiting amplifier, and configured to generate at least one control signal to the at least one equalizer according to the equalized input signal to adjust a peak gain of the at least one equalizer, wherein the peak gain of the at least one equalizer is at a Nyquist frequency.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: December 1, 2020
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Meng-Ping Kan, Hao-Yun Tang, Chia-Kai Chang
  • Patent number: 10609323
    Abstract: A universal tuning module may include an oscillator, a first tuner configured to process a first television signal, a second tuner configured to process a second television signal, a first switch configured to pass its input containing information associated with an output of the oscillator to said first tuner, and a second switch configured to pass its input containing information associated with the output of the oscillator to the second tuner.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: March 31, 2020
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Kuan-Ming Chen, Meng-Ping Kan, Hao-Yun Tang
  • Patent number: 10601386
    Abstract: An automatic gain control circuit for controlling an LNA for inputting signals carrying packets, the automatic gain control circuit can perform a background calibration in the non-preamble time region of a first packet for pre-determining a gain adjustment to the LNA before the next preamble of a second packet arrives, so that the gain of the LNA can be adjusted immediately according to the pre-determined gain adjustment when the next preamble of the second packet arrives.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 24, 2020
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Meng-Ping Kan, Kuan-Ming Chen, Benjamin Chiang, Tzy-Yun Wang
  • Patent number: 10559940
    Abstract: The present invention discloses a laser power control system includes a laser diode, a monitor photodiode, a bias control circuit, a modulation control circuit, a digital controller, and a laser diode driver. The laser power control system forms an automatic extinction ratio control loop that is configured to control the extinction ratio of the laser diode by comparing a monitor current with a first target current to keep the extinction ratio of the laser diode at the predetermined first target current. The laser power control system forms an automatic power control loop that is configured to control the average power of the laser diode by comparing the monitor current with the second target current to keep the average power of the laser diode at the predetermined second target current.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: February 11, 2020
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Meng-Ping Kan, Kuan-Hsun Wang
  • Publication number: 20200014353
    Abstract: An automatic gain control circuit for controlling an LNA for inputting signals carrying packets, the automatic gain control circuit can perform a background calibration in the non-preamble time region of a first packet for pre-determining a gain adjustment to the LNA before the next preamble of a second packet arrives, so that the gain of the LNA can be adjusted immediately according to the pre-determined gain adjustment when the next preamble of the second packet arrives.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 9, 2020
    Inventors: Meng-Ping Kan, Kuan-Ming Chen, Benjamin Chiang, Tzy-Yun Wang
  • Patent number: 9825661
    Abstract: An integrated multi-user satellite receiver includes: a single-chip, and the single-chip includes: a first synthesizer for generating a first oscillating signal having a first frequency; a first frequency multiplier for generating a second oscillating signal having a second frequency according to the first oscillating signal; a second synthesizer for generating a third oscillating signal having a third frequency; and a second frequency multiplier for generating a fourth oscillating signal having a fourth frequency according to the third oscillating signal; wherein the single-chip generates a first down-converted signal according to a first satellite signal and the second oscillating signal, generates a second down-converted signal according to the first satellite signal and the fourth oscillating signal, generates a third down-converted signal according to a second satellite signal and the second oscillating signal, and generates a fourth down-converted signal according to the second satellite signal and the
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: November 21, 2017
    Assignee: RAFAEL MICROELECTRONICS, INC.
    Inventors: Meng-Ping Kan, Hao-Yun Tang
  • Patent number: 9819409
    Abstract: An integrated circuit chip includes a first single-ended-to-differential amplifier configured to generate a differential output associated with an input of said first single-ended-to-differential amplifier; a second single-ended-to-differential amplifier arranged in parallel with said first single-ended-to-differential amplifier; a first set of switch circuits arranged downstream of said first single-ended-to-differential amplifier; a second set of switch circuits arranged downstream of said second single-ended-to-differential amplifier; and a first differential-to-single-ended amplifier arranged downstream of a first one of said switch circuits in said first set and downstream of a first one of said switch circuits in said second set.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: November 14, 2017
    Assignee: RAFAEL MICROELECTRONICS, INC.
    Inventors: Meng-Ping Kan, Shi-Ming Wu
  • Patent number: 9647707
    Abstract: A signal receiver includes a first mixer configured to mix its first input with its second input associated with an oscillating output of a first synthesizer into an output; a first splitter configured to split its input associated with the output of the first mixer into a first output and a second output; a first switch matrix configured to switch its first input associated with the first output of the first splitter into a first output; a second switch matrix configured to switch its first input associated with the second output of the first splitter into a first output; a second mixer configured to mix its first input associated with the first output of the first switch matrix with its second input associated with an oscillating output of a second synthesizer into an output; and a third mixer configured to mix its first input associated with the first output of the second switch matrix with its second input associated with an oscillating output of a third synthesizer into an output.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 9, 2017
    Assignee: RAFAEL MICROELECTRONICS, INC.
    Inventor: Meng-Ping Kan
  • Publication number: 20170085282
    Abstract: An integrated multi-user satellite receiver includes: a single-chip, and the single-chip includes: a first synthesizer for generating a first oscillating signal having a first frequency; a first frequency multiplier for generating a second oscillating signal having a second frequency according to the first oscillating signal; a second synthesizer for generating a third oscillating signal having a third frequency; and a second frequency multiplier for generating a fourth oscillating signal having a fourth frequency according to the third oscillating signal; wherein the single-chip generates a first down-converted signal according to a first satellite signal and the second oscillating signal, generates a second down-converted signal according to the first satellite signal and the fourth oscillating signal, generates a third down-converted signal according to a second satellite signal and the second oscillating signal, and generates a fourth down-converted signal according to the second satellite signal and the
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Meng-Ping Kan, Hao-Yun Tang
  • Patent number: 9548779
    Abstract: An integrated multi-user satellite receiver includes: a single-chip, and the single-chip includes: a first synthesizer for generating a first oscillating signal having a first frequency; a first frequency multiplier for generating a second oscillating signal having a second frequency according to the first oscillating signal; a second synthesizer for generating a third oscillating signal having a third frequency; and a second frequency multiplier for generating a fourth oscillating signal having a fourth frequency according to the third oscillating signal; wherein the single-chip generates a first down-converted signal according to a first satellite signal and the second oscillating signal, generates a second down-converted signal according to the first satellite signal and the fourth oscillating signal, generates a third down-converted signal according to a second satellite signal and the second oscillating signal, and generates a fourth down-converted signal according to the second satellite signal and the
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 17, 2017
    Assignee: RAFAEL MICROELECTRONICS, INC.
    Inventors: Meng-Ping Kan, Hao-Yun Tang
  • Patent number: 9351036
    Abstract: A channel receiving apparatus includes: a first modulating device converts a first channel into a first predetermined frequency according to a first oscillating signal and a second oscillating signal; and a second modulating device converts a second channel into a second predetermined frequency according to a third oscillating signal and a fourth oscillating signal; wherein the first oscillating signal has a first frequency, the second oscillating signal has a second frequency, the third oscillating signal has a third frequency, and the fourth oscillating signal has a fourth frequency, when the third frequency is substantially equal to the first frequency, the third oscillating signal is arranged to be shifted by a predetermined frequency range to have a fifth frequency different from the first frequency, and when the second frequency is substantially equal to the first frequency, the second frequency and the first frequency are shifted by the predetermined frequency range.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: May 24, 2016
    Assignee: Rafael microelectronics, Inc.
    Inventors: Meng-Ping Kan, Chun-An Hsieh
  • Publication number: 20160036400
    Abstract: An integrated circuit chip includes a first single-ended-to-differential amplifier configured to generate a differential output associated with an input of said first single-ended-to-differential amplifier; a second single-ended-to-differential amplifier arranged in parallel with said first single-ended-to-differential amplifier; a first set of switch circuits arranged downstream of said first single-ended-to-differential amplifier; a second set of switch circuits arranged downstream of said second single-ended-to-differential amplifier; and a first differential-to-single-ended amplifier arranged downstream of a first one of said switch circuits in said first set and downstream of a first one of said switch circuits in said second set.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 4, 2016
    Inventors: Meng-Ping Kan, Shi-Ming Wu
  • Publication number: 20150350720
    Abstract: A channel receiving apparatus includes: a first modulating device converts a first channel into a first predetermined frequency according to a first oscillating signal and a second oscillating signal; and a second modulating device converts a second channel into a second predetermined frequency according to a third oscillating signal and a fourth oscillating signal; wherein the first oscillating signal has a first frequency, the second oscillating signal has a second frequency, the third oscillating signal has a third frequency, and the fourth oscillating signal has a fourth frequency, when the third frequency is substantially equal to the first frequency, the third oscillating signal is arranged to be shifted by a predetermined frequency range to have a fifth frequency different from the first frequency, and when the second frequency is substantially equal to the first frequency, the second frequency and the first frequency are shifted by the predetermined frequency range.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: Rafael microelectronics, Inc.
    Inventors: Meng-Ping Kan, Chun-An Hsieh
  • Patent number: 9166638
    Abstract: An integrated circuit chip includes a first single-ended-to-differential amplifier configured to generate a differential output associated with an input of said first single-ended-to-differential amplifier; a second single-ended-to-differential amplifier arranged in parallel with said first single-ended-to-differential amplifier; a first set of switch circuits arranged downstream of said first single-ended-to-differential amplifier; a second set of switch circuits arranged downstream of said second single-ended-to-differential amplifier; and a first differential-to-single-ended amplifier arranged downstream of a first one of said switch circuits in said first set and downstream of a first one of said switch circuits in said second set.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 20, 2015
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Meng-Ping Kan, Shi-Ming Wu
  • Publication number: 20150288394
    Abstract: An integrated multi-user satellite receiver includes: a single-chip, and the single-chip includes: a first synthesizer for generating a first oscillating signal having a first frequency; a first frequency multiplier for generating a second oscillating signal having a second frequency according to the first oscillating signal; a second synthesizer for generating a third oscillating signal having a third frequency; and a second frequency multiplier for generating a fourth oscillating signal having a fourth frequency according to the third oscillating signal; wherein the single-chip generates a first down-converted signal according to a first satellite signal and the second oscillating signal, generates a second down-converted signal according to the first satellite signal and the fourth oscillating signal, generates a third down-converted signal according to a second satellite signal and the second oscillating signal, and generates a fourth down-converted signal according to the second satellite signal and the
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: Rafael microelectronics, Inc.
    Inventors: Meng-Ping Kan, Hao-Yun Tang
  • Publication number: 20150236738
    Abstract: An integrated circuit chip includes a first single-ended-to-differential amplifier configured to generate a differential output associated with an input of said first single-ended-to-differential amplifier; a second single-ended-to-differential amplifier arranged in parallel with said first single-ended-to-differential amplifier; a first set of switch circuits arranged downstream of said first single-ended-to-differential amplifier; a second set of switch circuits arranged downstream of said second single-ended-to-differential amplifier; and a first differential-to-single-ended amplifier arranged downstream of a first one of said switch circuits in said first set and downstream of a first one of said switch circuits in said second set.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: Rafael Microelectronics Incorporation
    Inventors: Meng-Ping Kan, Shi-Ming Wu
  • Publication number: 20150029403
    Abstract: A universal tuning module may include an oscillator, a first tuner configured to process a first television signal, a second tuner configured to process a second television signal, a first switch configured to pass its input containing information associated with an output of the oscillator to said first tuner, and a second switch configured to pass its input containing information associated with the output of the oscillator to the second tuner.
    Type: Application
    Filed: May 26, 2014
    Publication date: January 29, 2015
    Applicant: Rafael Microelectronics Incorporation
    Inventors: KUAN-MING CHEN, Meng-Ping Kan, Hao-Yun Tang
  • Patent number: 8872590
    Abstract: A signal amplifying circuit includes: a first transistor having a first connecting terminal coupled to an input signal, and a controlling terminal coupled to a first reference voltage; an adjustable resistive circuit having a first terminal coupled to a second connecting terminal of the first transistor; and a second transistor having a first connecting terminal coupled to a second terminal of the adjustable resistive circuit, a controlling terminal coupled to a second reference voltage, and a second connecting terminal for outputting an output signal corresponding to the input signal; wherein a resistance of the adjustable resistive circuit is adjusted to make an input impedance looking into the first transistor from the first connecting terminal equal a predetermined impedance.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: October 28, 2014
    Assignee: Rafael microelectronics, Inc.
    Inventor: Meng-Ping Kan
  • Publication number: 20140253239
    Abstract: A signal amplifying circuit includes: a first transistor having a first connecting terminal coupled to an input signal, and a controlling terminal coupled to a first reference voltage; an adjustable resistive circuit having a first terminal coupled to a second connecting terminal of the first transistor; and a second transistor having a first connecting terminal coupled to a second terminal of the adjustable resistive circuit, a controlling terminal coupled to a second reference voltage, and a second connecting terminal for outputting an output signal corresponding to the input signal; wherein a resistance of the adjustable resistive circuit is adjusted to make an input impedance looking into the first transistor from the first connecting terminal equal a predetermined impedance.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: RAFAEL MICROELECTRONICS, INC.
    Inventor: Meng-Ping Kan