Patents by Inventor Michael A. Gibson

Michael A. Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083116
    Abstract: Methods provide for fabricating objects through additive manufacturing in a manner that compensates for deformations introduced during post-print processing, such as sintering. An initial model may be divided into a plurality of segments, the initial model defining geometry of an object. For each of the segments, modified geometry may be calculated, where the modified geometry compensates for a predicted deformation. Print parameters can then be updated to incorporate the modified geometry, where the print parameters define geometry of the printed object (e.g., configuration settings of the printer, a tool path, an object model). The object may then be printed based on the updated print parameters.
    Type: Application
    Filed: June 13, 2023
    Publication date: March 14, 2024
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Michael A. Gibson, Blake Z. Reeves, Shashank Holenarasipura Raghu
  • Publication number: 20240050272
    Abstract: Methods and apparatuses for manipulating the temperature of a surface are provided. Devices of the present disclosure may include a thermal adjustment apparatus, such as a controller in electrical communication with one or more thermoelectric materials, placed adjacent to the surface of skin. The device may generate a series of thermal pulses at the surface, for providing an enhanced thermal sensation for a user. The thermal pulses may be characterized by temperature reversibility, where each pulse includes an initial temperature adjustment, followed by a return temperature adjustment, over a short period of time (e.g., less than 120 seconds). The average rate of temperature change upon initiation and upon return may be between about 0.1° C./sec and about 10.0° C./sec. In some cases, the average rate of the initial temperature adjustment is greater in magnitude than the average rate of the return temperature adjustment.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 15, 2024
    Applicant: EMBR Labs IP LLC
    Inventors: Matthew J. Smith, Samuel Shames, Michael Gibson, David Cohen-Tanugi
  • Patent number: 11767831
    Abstract: A hydraulic radial piston device includes a housing, a pintle having a pintle shaft, a rotor mounted on the pintle shaft and defining a plurality of cylinders, and a plurality of pistons displaceable in the cylinders. The radial piston device further includes a piston ring that provides an interface for the pistons. The radial piston device includes various configurations for improving the performance and efficiency of the device.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: September 26, 2023
    Assignee: Eaton Intelligent Power Limited
    Inventors: Aaron Smith, Sushant Subhash Bawdhankar, Aaron Matthew Davis, Jeffrey David Skinner, Kendrick Michael Gibson, Mark Alan Long, Nicholas John Hansen, Kendall Otis Lee
  • Patent number: 11759350
    Abstract: Methods and apparatuses for manipulating the temperature of a surface are provided. Devices of the present disclosure may include a thermal adjustment apparatus, such as a controller in electrical communication with one or more thermoelectric materials, placed adjacent to the surface of skin. The device may generate a series of thermal pulses at the surface, for providing an enhanced thermal sensation for a user. The thermal pulses may be characterized by temperature reversibility, where each pulse includes an initial temperature adjustment, followed by a return temperature adjustment, over a short period of time (e.g., less than 120 seconds). The average rate of temperature change upon initiation and upon return may be between about 0.1° C./sec and about 10.0° C./sec. In some cases, the average rate of the initial temperature adjustment is greater in magnitude than the average rate of the return temperature adjustment.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: September 19, 2023
    Assignee: EMBR Labs IP LLC
    Inventors: Matthew J. Smith, Samuel Shames, Michael A. Gibson, David Cohen-Tanugi
  • Publication number: 20230275806
    Abstract: Examples of the present disclosure describe systems and methods relating to adaptive virtual services. In an example, a user specifies a device configuration for a platform device. As a result, a service provider installs selected virtual-network functions and defines network connections as specified by the device configuration. Management software may also be installed, thereby enabling the service provider to communicate with and remotely manage the platform device. The installed virtual-network functions are activated on the platform device once it is delivered to the user. In some instances, the user changes the device configuration. For example, the user may install new virtual-network functions, reconfigure or remove existing virtual-network functions, or change defined network connections. As a result, the service provider reconfigures the platform device accordingly. Thus, the user need not purchase new specialized hardware in order to change the available functions of the computer network.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Applicant: Level 3 Communications, LLC
    Inventors: Adam Saenger, Matthew Holway, Len Brannen, Gene Clark, Anil Simlot, Zubin Ingah, Johan J. Shane, Michael Gibson, Cory Sawyer, Rich Cerami, Kurt Deshazer
  • Publication number: 20230264423
    Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.
    Type: Application
    Filed: February 12, 2023
    Publication date: August 24, 2023
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Gibson, George Hudelson, Nicholas Mykulowycz, Brian Kernan, Nihan Tuncer
  • Patent number: 11730094
    Abstract: A forestry machine includes a ground propulsion apparatus, a vehicle body supported by the ground propulsion apparatus, an operator seat disposed on the vehicle body, a first control lever operable by an operator sitting in the operator seat, a work implement including a saw, and a control circuit. The control circuit includes a first user input disposed on the first control lever. The first user input is operatively coupled to the work implement. Power to the saw is engaged upon the first user input being operated in combination with another operation. A method of operating a forestry machine includes operating a first user input disposed on the first control lever. Power is engaged to the saw in response to the first user input being operated in combination with another operation.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 22, 2023
    Assignee: KOMATSU LTD.
    Inventor: Kendrick Michael Gibson
  • Patent number: 11718037
    Abstract: Methods provide for fabricating objects through additive manufacturing in a manner that compensates for deformations introduced during post-print processing, such as sintering. An initial model may be divided into a plurality of segments, the initial model defining geometry of an object. For each of the segments, modified geometry may be calculated, where the modified geometry compensates for a predicted deformation. Print parameters can then be updated to incorporate the modified geometry, where the print parameters define geometry of the printed object (e.g., configuration settings of the printer, a tool path, an object model). The object may then be printed based on the updated print parameters.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: August 8, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Ricardo Chin, Michael A. Gibson, Blake Z. Reeves, Shashank Holenarasipura Raghu
  • Patent number: 11701250
    Abstract: Methods and apparatuses for manipulating the temperature of a surface are provided. Devices of the present disclosure may include a thermal adjustment apparatus, such as a controller in electrical communication with one or more thermoelectric materials, placed adjacent to the surface of skin. The device may generate a series of thermal pulses at the surface, for providing an enhanced thermal sensation for a user. The thermal pulses may be characterized by temperature reversibility, where each pulse includes an initial temperature adjustment, followed by a return temperature adjustment, over a short period of time (e.g., less than 120 seconds). The average rate of temperature change upon initiation and upon return may be between about 0.1° C./sec and about 10.0° C./sec. In some cases, the average rate of the initial temperature adjustment is greater in magnitude than the average rate of the return temperature adjustment.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 18, 2023
    Assignee: EMBR Labs Inc.
    Inventors: Matthew J. Smith, Samuel Shames, Michael Gibson, David Cohen-Tanugi
  • Publication number: 20230168666
    Abstract: Example embodiments of the present disclosure provide for an example method for controlling the activity of a production facility, such as a production facility having one or more automation environments. The example method includes receiving data indicative of a current production environment. The data can include data of a sensor representing a time since last unit or fill level at one or more processing stations in a production facility. The example method can include determining an impact probability of a downtime event based at least in part on data indicative of the current production environment. The example method can include determining the impact probability of a downtime event and performing a control action associated with the production facility in response to determining the impact probability of the downtime event.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 1, 2023
    Inventors: Christopher Michael Gibson, Lauren Challe Matthews
  • Patent number: 11646936
    Abstract: Examples of the present disclosure describe systems and methods relating to adaptive virtual services. In an example, a user specifies a device configuration for a platform device. As a result, a service provider installs selected virtual-network functions and defines network connections as specified by the device configuration. Management software may also be installed, thereby enabling the service provider to communicate with and remotely manage the platform device. The installed virtual-network functions are activated on the platform device once it is delivered to the user. In some instances, the user changes the device configuration. For example, the user may install new virtual-network functions, reconfigure or remove existing virtual-network functions, or change defined network connections. As a result, the service provider reconfigures the platform device accordingly. Thus, the user need not purchase new specialized hardware in order to change the available functions of the computer network.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: May 9, 2023
    Assignee: Level 3 Communications, LLC
    Inventors: Adam Saenger, Matthew Holway, Len Brannen, Gene Clark, Anil Simlot, Zubin Ingah, Johan J. Shane, Michael Gibson, Cory Sawyer, Rich Cerami, Kurt Deshazer
  • Patent number: 11554418
    Abstract: Assemblies fabricated by additive manufacturing include an object and a base plate providing support to the object during the manufacturing process. The geometry of the base plate is defined to optimize space and material constraints. During sintering, the base plate is reduced in area in a manner complementing the reduction in the footprint of the object, preserving the fidelity of the finished object.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: January 17, 2023
    Assignee: Desktop Metal, Inc.
    Inventor: Michael A. Gibson
  • Patent number: 11552977
    Abstract: A computer implemented method of identifying anomalous behavior of a computer system in a set of intercommunicating computer systems, each computer system in the set being uniquely identifiable, the method including monitoring communication between computer systems in the set for a predetermined baseline time period to generate a baseline vector representation of each of the systems; monitoring communication between computer systems in the set for a subsequent predetermined time period to generate a subsequent vector representation of each of the systems; comparing baseline and subsequent vector representations corresponding to a target computer system using a vector similarity function to identify anomalous behavior of the target system in the subsequent time period compared to the baseline time period, wherein a vector representation of the target system for a time period is generated based on a deterministic walk of a graph representation of communications between the computer systems in which nodes of the
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 10, 2023
    Assignee: British Telecommunications Public Limited Company
    Inventor: Michael Gibson
  • Patent number: 11511347
    Abstract: Support substrates are used in certain additive fabrication processes to permit processing of an object. For additive fabrication processes with materials that are sintered into a final part, a multi-layer support substrate of interleaved support and interface layers is fabricated to support an object while reducing an impact of friction on shrinkage of the part during the sintering process.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 29, 2022
    Assignee: Desktop Metal, Inc.
    Inventor: Michael A. Gibson
  • Publication number: 20220331448
    Abstract: Provided herein are compositions and methods for treating succinic semialdehyde dehydrogenase deficiency (SSADHD). Compositions may include a gene encoding a functional succinic semialdehyde dehydrogenase (SSADH) enzyme, such as ALDH5A1, operably linked to a targeting vector. The functional SSADII enzyme is envisioned to lower the levels of circulating gamma-hydroxybutyric acid (GHB) and ?-aminobutyric acid (GABA). In some embodiments, combination therapies are envisioned, comprising administering to the subject therapeutically effective amounts of a combination of a composition comprising a gene encoding a functional SSADII enzyme operably linked to a targeting vector; one or more mTOR inhibitors; and a GABA-T inhibitor. Suitable mTOR inhibitors include rapamycin, while suitable GABA-T inhibitors include vigabatrin.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 20, 2022
    Inventors: Kara Rain VOGEL, Kenneth Michael Gibson, Garret Robert AINSLIE
  • Patent number: 11472116
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 18, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Patent number: 11448203
    Abstract: A hydraulic radial piston device includes a housing, a pintle having a pintle shaft, a rotor mounted on the pintle shaft and defining a plurality of cylinders, and a plurality of pistons displaceable in the cylinders. The radial piston device further includes a piston ring that provides an interface for the pistons. The radial piston device includes various configurations for improving the performance and efficiency of the device.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 20, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: Aaron Smith, Sushant Subhash Bawdhankar, Aaron Matthew Davis, Jeffrey David Skinner, Kendrick Michael Gibson, Mark Alan Long, Nicholas John Hansen, Kendall Otis Lee
  • Patent number: 11420254
    Abstract: A 3D printer includes a build plate providing a surface on which an object is printed. Prior to printing, a sheet is fixed to the surface of the build plate. The sheet is composed of a material that adheres to a binder component of the feedstock used to print the object. During printing, the first layer of the printed object forms a bond with the sheet, which secures the location of the first layer and resists movement of the object during printing. Following printing and the object gaining sufficient rigidity, the object and sheet can be removed together from the printer. The sheet may then be peeled from the object, and the object can undergo debinding and/or sintering to create a finished object.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 23, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Tomek Brzezinski, Michael A. Gibson, Michael Kelly
  • Patent number: 11413684
    Abstract: 3D-printed parts may include binding agents to be removed following an additive manufacturing process. A debinding process removes the binding agents by immersing the part in a solvent bath causing chemical dissolution of the binding agents. The time of exposure of the 3D-printed part to the solvent is determined based on the geometry of the part, wherein the geometry is applied to predict the diffusion of the solvent through the 3D-printed part. The 3D-printed part is then immersed in the solvent bath to remove the binding agent, and is removed from the solvent bath after the time of exposure.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: August 16, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Michael A. Gibson, Alexander C. Barbati
  • Publication number: 20220250149
    Abstract: Embodiments described herein relate to methods and systems for controlling the packing behavior of powders for additive manufacturing applications. In some embodiments, a method for additive manufacturing includes adding a packing modifier to a base powder to form a build material. The build material may be spread to form a layer across a powder bed, and the build material may be selectively joined along a two-dimensional pattern associated with the layer. The steps of spreading a layer of build material and selectively joining the build material in the layer may be repeated to form a three-dimensional object. The packing modifier may be selected to enhance one or more powder packing and/or powder flow characteristics of the base powder to provide for improved uniformity of the additive manufacturing process, promote sintering, and/or to enhance the properties of the manufactured three-dimensional objects.
    Type: Application
    Filed: November 8, 2019
    Publication date: August 11, 2022
    Applicant: Desktop Metal, Inc.
    Inventors: Michael A. Gibson, Alexander C. Barbati, George Hudelson, Robert J. Nick, Paul A. Hoisington, Brian D. Kernan