Patents by Inventor Michael A. Gibson
Michael A. Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200061705Abstract: 3D-printed parts may include binding agents to be removed following an additive manufacturing process. A debinding process removes the binding agents by immersing the part in a solvent bath causing chemical dissolution of the binding agents. The time of exposure of the 3D-printed part to the solvent is determined based on the geometry of the part, wherein the geometry is applied to predict the diffusion of the solvent through the 3D-printed part. The 3D-printed part is then immersed in the solvent bath to remove the binding agent, and is removed from the solvent bath after the time of exposure.Type: ApplicationFiled: September 5, 2019Publication date: February 27, 2020Applicant: Desktop Metal, Inc.Inventors: Michael A. Gibson, Alexander C. Barbati
-
Publication number: 20200009654Abstract: A 3D printer includes a build plate providing a surface on which an object is printed. Prior to printing, a sheet is fixed to the surface of the build plate. The sheet is composed of a material that adheres to a binder component of the feedstock used to print the object. During printing, the first layer of the printed object forms a bond with the sheet, which secures the location of the first layer and resists movement of the object during printing. Following printing and the object gaining sufficient rigidity, the object and sheet can be removed together from the printer. The sheet may then be peeled from the object, and the object can undergo debinding and/or sintering to create a finished object.Type: ApplicationFiled: July 11, 2019Publication date: January 9, 2020Applicant: Desktop Metal, Inc.Inventors: Tomek Brzezinski, Michael A. Gibson, Michael Kelly
-
Publication number: 20200001363Abstract: 3D-printed parts may include binding agents to be removed following an additive manufacturing process. A debinding process removes the binding agents by immersing the part in a solvent bath causing chemical dissolution of the binding agents. The time of exposure of the 3D-printed part to the solvent is determined based on the geometry of the part, wherein the geometry is applied to predict the diffusion of the solvent through the 3D-printed part. The 3D-printed part is then immersed in the solvent bath to remove the binding agent, and is removed from the solvent bath after the time of exposure.Type: ApplicationFiled: September 5, 2019Publication date: January 2, 2020Applicant: Desktop Metal, Inc.Inventors: Michael A. Gibson, Alexander C. Barbati
-
Publication number: 20190375009Abstract: Support substrates are used in certain additive fabrication processes to permit processing of an object. For additive fabrication processes with materials that are sintered into a final part, a multi-layer support substrate of interleaved support and interface layers is fabricated to support an object while reducing an impact of friction on shrinkage of the part during the sintering process.Type: ApplicationFiled: June 10, 2019Publication date: December 12, 2019Applicant: Desktop Metal, Inc.Inventor: Michael A. GIBSON
-
Publication number: 20190329500Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20190329501Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20190329502Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20190210106Abstract: 3D-printed parts may include binding agents to be removed following an additive manufacturing process. A debinding process removes the binding agents by immersing the part in a solvent bath causing chemical dissolution of the binding agents. The time of exposure of the 3D-printed part to the solvent is determined based on the geometry of the part, wherein the geometry is applied to predict the diffusion of the solvent through the 3D-printed part. The 3D-printed part is then immersed in the solvent bath to remove the binding agent, and is removed from the solvent bath after the time of exposure.Type: ApplicationFiled: December 14, 2018Publication date: July 11, 2019Inventors: Michael A. Gibson, Alexander C. Barbati
-
Publication number: 20180304540Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: April 23, 2018Publication date: October 25, 2018Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20180304365Abstract: A 3D printer includes a build plate providing a surface on which an object is printed. Prior to printing, a sheet is fixed to the surface of the build plate. The sheet is composed of a material that adheres to a binder component of the feedstock used to print the object. During printing, the first layer of the printed object forms a bond with the sheet, which secures the location of the first layer and resists movement of the object during printing. Following printing and the object gaining sufficient rigidity, the object and sheet can be removed together from the printer. The sheet may then be peeled from the object, and the object can undergo debinding and/or sintering to create a finished object.Type: ApplicationFiled: April 20, 2018Publication date: October 25, 2018Inventors: Tomek Brzezinski, Michael A. Gibson, Michael Kelly
-
Publication number: 20180307209Abstract: Methods provide for fabricating objects through additive manufacturing in a manner that compensates for deformations introduced during post-print processing, such as sintering. An initial model may be divided into a plurality of segments, the initial model defining geometry of an object. For each of the segments, modified geometry may be calculated, where the modified geometry compensates for a predicted deformation. Print parameters can then be updated to incorporate the modified geometry, where the print parameters define geometry of the printed object (e.g., configuration settings of the printer, a tool path, an object model). The object may then be printed based on the updated print parameters.Type: ApplicationFiled: April 20, 2018Publication date: October 25, 2018Inventors: Ricardo Chin, Michael A. Gibson, Blake Z. Reeves, Shashank Holenarasipura Raghu
-
Publication number: 20180297272Abstract: Methods of printing an object via a 3-dimensional printer include provide for printed objects having a higher density. A printer head is operated to deposit build material in lines under controlled parameters including lateral position, height, extrustion rate, extrusion temperature, and/or extrusion material. The printer may print first lines forming channels at a given layer, and then second lines to fill those channels. The printer may operate with other approaches to fill gaps between printed lines, such as offset and/or smaller lines aligned with those gaps. The resulting object has greater density while maintaining an accurate object shape.Type: ApplicationFiled: April 13, 2018Publication date: October 18, 2018Inventors: Aaron Preston, Nicholas Mykulowycz, Alexander C. Barbati, Michael A. Gibson, Charles John Haider, Jay Tobia
-
Patent number: 6931401Abstract: A method and system for conducting sequence searches in a sequence database wherein in one embodiment, the method includes: combining a plurality of query sequences into a combined query sequence; determining a plurality of subdivisions of the sequence database; performing a plurality of searches, wherein each search includes a comparison of the combined query sequence against one of the plurality of subdivisions of the database to produce a plurality of word matches; extending the length of the plurality of word matches to produce a plurality of High-scoring Segment Pairs, combining the plurality of High-scoring Segment Pairs; and producing a plurality of reports, each report representing the highest scoring matches for one of the plurality of query sequences.Type: GrantFiled: May 6, 2002Date of Patent: August 16, 2005Assignee: Paracel, Inc.Inventors: Michael A. Gibson, Richard J. Messenger, Marc A. Rieffel, Zheng Zhang
-
Publication number: 20030033279Abstract: The present invention provides methods and systems for performing improved implementations of the BLAST algorithm for high-speed sequence database searching, e.g., on commodity Beowulf-class parallel computing hardware. The present invention also provides methods and systems for query packing, dynamic database division, and improved hit extension.Type: ApplicationFiled: May 6, 2002Publication date: February 13, 2003Inventors: Michael A. Gibson, Richard J. Messenger, Marc A. Rieffel, Zheng Zhang
-
Patent number: 5536378Abstract: A reactor apparatus for production of Lunar oxygen uses feed stocks comprising a particulate hydrogen-reducible enriched feed in the size range from about 20-200 microns, containing 80-90% Lunar ilmenite (FeTiO.sub.3) and ferrous Lunar agglutinates. The reactor apparatus has three vertically spaced fluidized zones with downcomers from the upper to the central fluidized zone and openings for introducing a hydrogen-containing gas stream through the lower fluidized zone. A solid-to-gas RF-dielectric heater has a ceramic honeycomb with small parallel channels separated by thin, ceramic walls and electrodes surrounding the honeycomb connected to an external RF power source for heating the gas stream to a reducing reaction temperature. A top inlet introduces the enriched feed into the upper fluidized zone for fluidization therein and flow into middle and lower fluidized zones countercurrent to the flow of the gas stream.Type: GrantFiled: September 20, 1994Date of Patent: July 16, 1996Assignee: Carbotek Inc.Inventors: Michael A. Gibson, Christian W. Knudsen
-
Patent number: 5348696Abstract: A feed material which is a mixture of chemically reduced lunar ilmenite and lunar agglutinates having a particle size in the range of 20-200 microns produced by hydrogen reduction in a fine particulate state is compacted into a shape and sintered to produce structural, radiation shielding construction blocks or bricks.Type: GrantFiled: February 12, 1990Date of Patent: September 20, 1994Assignee: Carbotek Inc.Inventors: Michael A. Gibson, Christian W. Knudsen
-
Patent number: 4948477Abstract: A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.Type: GrantFiled: November 6, 1987Date of Patent: August 14, 1990Assignee: Carbotek, Inc.Inventors: Michael A. Gibson, Christian W. Knudsen
-
Patent number: 4938946Abstract: A manufacturing plant and process for production of hydrogen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feedstock is the pulverized surface layer of lunar soil known as regolith. The regolith contains up to about 150 ppm (wt.) hydrogen presumably derived from the "solar wind". The regolith is screened and fines of less than 200 micron size are recovered. The 200 micron, and smaller, particles are introduced into a fluidized bed reactor and fluidized in a hydrogen gas stream at a temperature of about 600.degree. C. The off-gas is passed through an absorber to separate by-product gases, such as hydrogen sulfide, which may be generated in the process, part of the hydrogen is removed to storage, and the remainder is recycled to fluidize the reactor. The recovered raw product gas is preferably further treated using combinations of selected membrane permeations and cryogenic distillations to purify product hydrogen and recover byproduct .sup.3 He, .sup.4 He, N.Type: GrantFiled: April 13, 1988Date of Patent: July 3, 1990Assignee: Carbotek, Inc.Inventors: Michael A. Gibson, Christian W. Knudsen
-
Patent number: 4876780Abstract: An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes.Type: GrantFiled: October 31, 1988Date of Patent: October 31, 1989Assignee: Carbotek, Inc.Inventors: Charles R. Stahl, Michael A. Gibson, Christian W. Knudsen
-
Patent number: 4694907Abstract: A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions.Type: GrantFiled: February 21, 1986Date of Patent: September 22, 1987Assignee: Carbotek, Inc.Inventors: Charles R. Stahl, Michael A. Gibson, Christian W. Knudsen