Patents by Inventor Michael A. Huff

Michael A. Huff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7679042
    Abstract: Methods for fabricating structures such as transducer pedestal structures and transducers fabricated by the methods.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 16, 2010
    Inventors: Allen M. Flusberg, Michael A. Huff
  • Publication number: 20090283927
    Abstract: A method is disclosed of implementing lens elements or lens arrays having dimensions ranging from a few centimeters down to the micro-scale or nano-scale using the surface tension of the lens material in a molten state to allow the curved shape of the lens to be precisely defined. The method has useful application in the fabrication of lens elements and lens arrays out of a large variety of material types, including elemental materials, as well as compound materials and alloys. The method also allows the implementation of lenses having far superior surface smoothness compared to other approaches, as well as very accurate lens shapes. The method allows the making of high quality lenses and lens arrays, wherein the diameter of the lenses are on the order of a few microns or less. Convex, concave, plano-convex, plano-concave, compound lenses, and many other types of lens shapes can be implemented using the method of the present invention.
    Type: Application
    Filed: March 12, 2009
    Publication date: November 19, 2009
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20090286382
    Abstract: A method of wafer or substrate bonding a substrate made of a semiconductor material with a substrate made from a metallic material is disclosed. The method allows the bonding of the two substrates together without the use of any intermediate joining gluing, or solder layer(s) between the two substrates. The method allows the moderate or low temperature bonding of the metal and semiconductor substrates, combined with methods to modify the materials so as to enable low electrical resistance interfaces to be realized between the bonded substrates, and also combined with methods to obtain a low thermal resistance interface between the bonded substrates, thereby enabling various useful improvements for fabrication, packaging and manufacturing of semiconductor devices and systems.
    Type: Application
    Filed: September 22, 2008
    Publication date: November 19, 2009
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20090092162
    Abstract: A laser diode system is disclosed in which a substrate made of a semiconductor material containing laser diodes is bonded to a substrate made from a metallic material without the use of any intermediate joining or soldering layers between the two substrates. The metal substrate acts as an electrode and/or heat sink for the laser diode semiconductor substrate. Microchannels may be included in the metal substrate to allow coolant fluid to pass through, thereby facilitating the removal of heat from the laser diode substrate. A second metal substrate including cooling fluid microchannels may also be bonded to the laser diode substrate to provide greater heat transfer from the laser diode substrate. The bonding of the substrates at low temperatures, combined with modifications to the substrate surfaces, enables the realization of a low electrical resistance interface and a low thermal resistance interface between the bonded substrates.
    Type: Application
    Filed: September 22, 2008
    Publication date: April 9, 2009
    Inventors: Michael A. Huff, Jonah Jacob
  • Publication number: 20090002914
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 1, 2009
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 7188530
    Abstract: A micro-mechanical pressure transducer is disclosed in which a capacitive transducer structure is integrated with an inductor coil to form a LC tank circuit, resonance frequency of which may be detected remotely by imposing an electromagnetic field on the transducer. The capacitive transducer structure comprises a conductive movable diaphragm, a fixed counter electrode, and a predetermined air gap between said diaphragm and electrode. The diaphragm deflects in response to an applied pressure differential, leading to a change of capacitance in the structure and hence a shift of resonance frequency of the LC tank circuit. The resonance frequency of the LC circuit can be remotely detected by measuring and determining the corresponding peak in electromagnetic impedance of the transducer.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael Pedersen, Mehmet Ozgur, Michael A. Huff
  • Patent number: 7052926
    Abstract: A method of fabricating a high-aspect ratio micro-mechanical device or system with dimensions that can vary from nanometers to millimeters is disclosed. According to the method, a tool master with a high-aspect ratio, submicron lateral resolution and vertical dimensions substantially corresponding to the vertical dimensions of the device or system is formed. The tool master and a substrate sized for the device or system are heated to a temperature at which the substrate becomes compliant. The heated tool master and substrate are then pressed together so as to imprint the shape and form of the tool master into the substrate. The temperature of the tool master and substrate are then lowered, whereupon the tool master and substrate are separated and cooled to ambient temperature. The tool master can have a plurality of duplications to form a plurality of devices or systems. The substrate is composed of a laminate comprised of a sacrificial layer and a structural layer.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: May 30, 2006
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Patent number: 7045440
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 16, 2006
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 7024936
    Abstract: A micro-mechanical pressure transducer is disclosed in which a capacitive transducer structure is integrated with an inductor coil to form a LC tank circuit, resonance frequency of which may be detected remotely by imposing an electromagnetic field on the transducer. The capacitive transducer structure comprises a conductive movable diaphragm, a fixed counter electrode, and a predetermined air gap between said diaphragm and electrode. The diaphragm deflects in response to an applied pressure differential, leading to a change of capacitance in the structure and hence a shift of resonance frequency of the LC tank circuit. The resonance frequency of the LC circuit can be remotely detected by measuring and determining the corresponding peak in electromagnetic impedance of the transducer.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: April 11, 2006
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael Pedersen, Mehmet Ozgur, Michael A. Huff
  • Patent number: 7017419
    Abstract: A micro-mechanical pressure transducer is disclosed in which a capacitive transducer structure is integrated with an inductor coil to form a LC tank circuit, resonance frequency of which may be detected remotely by imposing an electromagnetic field on the transducer. The capacitive transducer structure comprises a conductive movable diaphragm, a fixed counter electrode, and a predetermined air gap between said diaphragm and electrode. The diaphragm deflects in response to an applied pressure differential, leading to a change of capacitance in the structure and hence a shift of resonance frequency of the LC tank circuit. The resonance frequency of the LC circuit can be remotely detected by measuring and determining the corresponding peak in electromagnetic impedance of the transducer.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: March 28, 2006
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael Pedersen, Mehmet Ozgur, Michael A. Huff
  • Patent number: 7012327
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: March 14, 2006
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 6909589
    Abstract: A variable capacitor device using MEMS or micromachining techniques wherein thin-films of materials are deposited, patterned and etched to form movable micromechanical elements on the surface of a substrate composed of either semiconductor, glass, metal, or ceramic material. In one embodiment of the present invention to achieve higher frequency performance as well as other benefits, the substrate is comprised of Low-Temperature Co-Fired Ceramics (LTCC). The variable capacitor is an electrostatically actuated micromechanical device and if fabricated on a LTCC multi-layered substrate material has continuous electrical connections through the layers. The same LTCC substrate material can also be used to enclose the device by selectively removing a portion of the upper substrate so as to form a cavity. The two substrates are then bonded together to enclose and protect the variable capacitor.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: June 21, 2005
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20040262645
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Application
    Filed: April 30, 2004
    Publication date: December 30, 2004
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 6815739
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: November 9, 2004
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Publication number: 20040150939
    Abstract: A variable capacitor device using MEMS or micromachining techniques wherein thin-films of materials are deposited, patterned and etched to form movable micromechanical elements on the surface of a substrate composed of either semiconductor, glass, metal, or ceramic material. In one embodiment of the present invention to achieve higher frequency performance as well as other benefits, the substrate is comprised of Low-Temperature Co-Fired Ceramics (LTCC). The variable capacitor is an electrostatically actuated micromechanical device and if fabricated on a LTCC multi-layered substrate material has continuous electrical connections through the layers. The same LTCC substrate material can also be used to enclose the device by selectively removing a portion of the upper substrate so as to form a cavity. The two substrates are then bonded together to enclose and protect the variable capacitor.
    Type: Application
    Filed: November 20, 2003
    Publication date: August 5, 2004
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20040057589
    Abstract: A micro-mechanical pressure transducer is disclosed in which a capacitive transducer structure is integrated with an inductor coil to form a LC tank circuit, resonance frequency of which may be detected remotely by imposing an electromagnetic field on the transducer. The capacitive transducer structure comprises a conductive movable diaphragm, a fixed counter electrode, and a predetermined air gap between said diaphragm and electrode. The diaphragm deflects in response to an applied pressure differential, leading to a change of capacitance in the structure and hence a shift of resonance frequency of the LC tank circuit. The resonance frequency of the LC circuit can be remotely detected by measuring and determining the corresponding peak in electromagnetic impedance of the transducer.
    Type: Application
    Filed: June 17, 2003
    Publication date: March 25, 2004
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael Pedersen, Mehmet Ozgur, Michael A. Huff
  • Patent number: 6622558
    Abstract: A method and sensor for detecting strain using shape memory alloys is disclosed. The sensor comprises a substrate material, a flexible diaphragm provided on the substrate material and a thin film SMA material deposited on the flexible diaphragm. The thin film SMA material is capable of undergoing a phase transformation in response to a physical stimulus being applied thereto. During such a phase transformation, a change occurs in the electrical resistance of the thin film SMA material. By measuring the value of the electrical resistance of the thin film SMA material immediately before and after the thin film SMA material undergoes a phase transformation, the difference in the value of the electrical resistance can be determined and utilized to determine the magnitude of the physical stimulus that was applied to the thin film SMA material causing it to undergo a phase transformation.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: September 23, 2003
    Assignee: Orbital Research Inc.
    Inventors: Michael A. Huff, William L. Benard, Frederick J. Lisy, Troy S. Prince
  • Publication number: 20030020173
    Abstract: A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
    Type: Application
    Filed: May 20, 2002
    Publication date: January 30, 2003
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Publication number: 20020062692
    Abstract: A method and sensor for detecting strain using shape memory alloys is disclosed. The sensor comprises a substrate material, a flexible diaphragm provided on the substrate material and a thin film SMA material deposited on the flexible diaphragm. The thin film SMA material is capable of undergoing a phase transformation in response to a physical stimulus being applied thereto. During such a phase transformation, a change occurs in the electrical resistance of the thin film SMA material. By measuring the value of the electrical resistance of the thin film SMA material immediately before and after the thin film SMA material undergoes a phase transformation, the difference in the value of the electrical resistance can be determined and utilized to determine the magnitude of the physical stimulus that was applied to the thin film SMA material causing it to undergo a phase transformation.
    Type: Application
    Filed: November 30, 2000
    Publication date: May 30, 2002
    Applicant: Orbital Research Inc.
    Inventors: Michael A. Huff, William L. Benard, Frederick J. Lisy, Troy S. Prince
  • Patent number: 5238223
    Abstract: A microvalve composed of multiple layers bonded together is distinguished by the fact that all layers are structured only from one side. Prior to bonding of a new layer to the preceding layer, the new layer is homogeneous or unstructured. Only after bonding of the new layer to the preceding layers or wafers is the newly-applied layer provided with a structure, by etching or other profiling method. This simplifies construction, and reduces manufacturing cost, of the microvalve. The valve can be used for either liquid or gaseous media. It is adapted for use, inter alia, as a fuel injection valve or as a pilot control stage of servo-valves used in anti-lock braking systems (ABS). A method of producing a sealed cavity with a residual gas pressure therein, which may have applications other than valve manufacture, is also disclosed.
    Type: Grant
    Filed: June 16, 1992
    Date of Patent: August 24, 1993
    Assignees: Robert Bosch GmbH, Mass. Inst. of Tech.
    Inventors: Michael Mettner, Martin A. Schmidt, Theresa Lober, Michael A. Huff