Patents by Inventor Michael A. Long
Michael A. Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250091711Abstract: Systems and methods of aircraft modal suppression informed by an underlying non-uniform vertical turbulence model and uniform lateral turbulence model. The systems and methods include receiving a plurality of signals from on-board inertial sensors of an aircraft, utilizing the plurality of signals to generate a plurality of observers, utilizing the observers to determine a control law command for controlling one or more control surfaces of the aircraft, and moving the one or more control surfaces of the aircraft in accordance with the determined control law command such that lateral mode vibrations of the aircraft are diminished.Type: ApplicationFiled: September 19, 2023Publication date: March 20, 2025Inventors: Paul C. Strefling, John M. Nappi, Jr., Jared D. Weaver, Sascha K. Ruegamer, William J. Wheeler, Tyler B. Wilhelm, Thomas D. Potter, Abraham J. Pachikara, Michael A. Long, Matthew E. Gajda, Christopher A. Jensen, Brad E. Xanthopoulos, Bryan A. Lopez, Brian L. Beechinor, Kimberly A. Hinson, Alexander C. Ho
-
Publication number: 20210358639Abstract: A system to manage pandemic health risk provides a pandemic app having a user interface that runs on a mobile device, a voluntary participant can register to use the pandemic app, and a trace contact is identified in the pandemic app by the participant through the user interface.Type: ApplicationFiled: May 12, 2020Publication date: November 18, 2021Inventor: Michael A. Long
-
Patent number: 9895761Abstract: A wireless control system (10) for a welding system (12) including an electrical control interface (18). The control system (10) may generally comprise a foot pedal (14) and a receiver (16). The foot pedal (14) may include a pivotable housing (20), a sensing element (22) operable to sense a position of the pivotable housing (20) and provide a corresponding pedal position signal, and a transmitter (24) operable to wirelessly transmit the pedal position signal. The receiver (16) may include an antenna (36) operable to wirelessly receive the pedal position signal generated by the foot pedal (14), a processor (38) operable to process the received pedal position signal, and a connector (40) operable to connect with the electrical control interface (18) associated with the welding system (12) to provide the processed pedal position signal thereto.Type: GrantFiled: March 9, 2016Date of Patent: February 20, 2018Assignee: Lincoln Global, Inc.Inventors: Fredric A. Bland, Michael A. Long
-
Publication number: 20160184918Abstract: A wireless control system (10) for a welding system (12) including an electrical control interface (18). The control system (10) may generally comprise a foot pedal (14) and a receiver (16). The foot pedal (14) may include a pivotable housing (20), a sensing element (22) operable to sense a position of the pivotable housing (20) and provide a corresponding pedal position signal, and a transmitter (24) operable to wirelessly transmit the pedal position signal. The receiver (16) may include an antenna (36) operable to wirelessly receive the pedal position signal generated by the foot pedal (14), a processor (38) operable to process the received pedal position signal, and a connector (40) operable to connect with the electrical control interface (18) associated with the welding system (12) to provide the processed pedal position signal thereto.Type: ApplicationFiled: March 9, 2016Publication date: June 30, 2016Inventors: Fredric A. Bland, Michael A. Long
-
Publication number: 20160187210Abstract: Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.Type: ApplicationFiled: December 31, 2014Publication date: June 30, 2016Inventors: Nate J. Coleman, Michael A. Long
-
Publication number: 20160187186Abstract: Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.Type: ApplicationFiled: December 31, 2014Publication date: June 30, 2016Inventors: Nate J. Coleman, Michael A. LONG
-
Patent number: 9360383Abstract: Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.Type: GrantFiled: April 4, 2013Date of Patent: June 7, 2016Assignee: Nate J. Coleman and Aexius, LLCInventors: Nate J. Coleman, Michael A. Long
-
Patent number: 9302340Abstract: A wireless control system (10) for a welding system (12) including an electrical control interface (18). The control system (10) may generally comprise a foot pedal (14) and a receiver (16). The foot pedal (14) may include a pivotable housing (20), a sensing element (22) operable to sense a position of the pivotable housing (20) and provide a corresponding pedal position signal, and a transmitter (24) operable to wirelessly transmit the pedal position signal. The receiver (16) may include an antenna (36) operable to wirelessly receive the pedal position signal generated by the foot pedal (14), a processor (38) operable to process the received pedal position signal, and a connector (40) operable to connect with the electrical control interface (18) associated with the welding system (12) to provide the processed pedal position signal thereto.Type: GrantFiled: August 17, 2007Date of Patent: April 5, 2016Assignee: LINCOLN GLOBAL, INC.Inventors: Fredric A. Bland, Michael A. Long
-
Publication number: 20150107376Abstract: Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.Type: ApplicationFiled: December 31, 2014Publication date: April 23, 2015Inventors: Nate J. Coleman, Michael A. Long
-
Patent number: 8991753Abstract: A method of positioning landing gear of an airplane is provided that includes providing the landing gear including a shock strut, a truck beam operatively pivotally connected to the shock strut, first and second interconnected links operatively connected to the truck beam and a third link extending between the shock strut and the first and second links with the third link pivotally connected to the second link at a third pivot. When the landing gear is commanded to a lowered position, the third pivot is positioned in a first position to support a taxi mode, a take-off mode and a landing mode if the landing gear is operational and in a second position to support an alternate landing mode if the landing gear is not fully operational. When the landing gear is commanded to a raised position, the third pivot is in the second position to support a stow mode.Type: GrantFiled: May 22, 2013Date of Patent: March 31, 2015Assignee: The Boeing CompanyInventors: Mitchell L. Mellor, Michael A. Long, Richard B. Odell
-
Patent number: 8985511Abstract: A method of positioning landing gear of an airplane is provided that includes providing the landing gear including a shock strut, a truck beam operatively pivotally connected to the shock strut, first and second interconnected links operatively connected to the truck beam and a third link extending between the shock strut and the first and second links with the third link pivotally connected to the second link at a third pivot. When the landing gear is commanded to a lowered position, the third pivot is positioned in a first position to support a taxi mode, a take-off mode and a landing mode if the landing gear is operational and in a second position to support an alternate landing mode if the landing gear is not fully operational. When the landing gear is commanded to a raised position, the third pivot is in the second position to support a stow mode.Type: GrantFiled: May 22, 2013Date of Patent: March 24, 2015Assignee: The Boeing CompanyInventors: Mitchell L. Mellor, Michael A. Long, Richard B. Odell
-
Publication number: 20140299389Abstract: Force and location sensing systems and methods are disclosed. A method comprises bending a L-beam at an initially unknown location on a force-supporting portion of the L-beam, the L-beam substantially having a tension side and a compression side, measuring a first local stress at a first location on the tension side, measuring a second local stress at a second location on the tension side, measuring a third local stress at a third location on the compression side, and measuring a fourth local stress at a fourth location on the compression side. A weight-sensing storage system capable of tracking removed items is disclosed with a product image captured via a camera, a plurality of sensors on an L-beam, a first signal from the plurality of sensors indicating a first state prior to change of the product image, and a second signal indicating lower strain on the L-beam than the first signal.Type: ApplicationFiled: April 4, 2013Publication date: October 9, 2014Inventors: Nate J. Coleman, Michael A. Long
-
Publication number: 20140151499Abstract: A method of positioning landing gear of an airplane is provided that includes providing the landing gear including a shock strut, a truck beam operatively pivotally connected to the shock strut, first and second interconnected links operatively connected to the truck beam and a third link extending between the shock strut and the first and second links with the third link pivotally connected to the second link at a third pivot. When the landing gear is commanded to a lowered position, the third pivot is positioned in a first position to support a taxi mode, a take-off mode and a landing mode if the landing gear is operational and in a second position to support an alternate landing mode if the landing gear is not fully operational. When the landing gear is commanded to a raised position, the third pivot is in the second position to support a stow mode.Type: ApplicationFiled: May 22, 2013Publication date: June 5, 2014Inventors: Mitchell L. Mellor, Michael A. Long, Richard B. Odell
-
Patent number: 8653414Abstract: A wireless controller (14) comprises a housing including a first portion (20a) and a second portion (20b) moveably attached to the first portion (20a). The first portion (20a) supports the controller (14) relative to an external surface and is adjustable between an elevated position and a collapsed position, wherein a first end of the first portion (20a) is elevated relative to a second end of the first portion (20a) when the first portion is in the elevated position. A sensing element (22) senses a position of the second portion (20b) relative to the first portion (20a) and provides a corresponding position signal. A transmitter (24) is coupled with the sensing element (22) and wirelessly transmits the position signal.Type: GrantFiled: June 21, 2011Date of Patent: February 18, 2014Assignee: Lincoln Global, Inc.Inventors: Michael A Long, Hermann Brian Falter, Hans Noack
-
Publication number: 20130256455Abstract: A method of positioning landing gear of an airplane is provided that includes providing the landing gear including a shock strut, a truck beam operatively pivotally connected to the shock strut, first and second interconnected links operatively connected to the truck beam and a third link extending between the shock strut and the first and second links with the third link pivotally connected to the second link at a third pivot. When the landing gear is commanded to a lowered position, the third pivot is positioned in a first position to support a taxi mode, a take-off mode and a landing mode if the landing gear is operational and in a second position to support an alternate landing mode if the landing gear is not fully operational. When the landing gear is commanded to a raised position, the third pivot is in the second position to support a stow mode.Type: ApplicationFiled: May 22, 2013Publication date: October 3, 2013Applicant: The Boeing CompanyInventors: Mitchell L. Mellor, Michael A. Long, Richard B. Odell
-
Patent number: 8448900Abstract: A semi-levered landing gear is provided that includes a shock strut, a truck beam pivotally connected to the shock strut and a semi-levered landing gear mechanism including at least three links configured to angularly orient the truck beam and a truck pitch actuation system operatively connected to at least one of the three links. The landing gear mechanism may be configured to cooperate with an extension of a shock strut by positioning the truck pitch actuator in a retracted position, thereby positioning a forward end of the truck beam in a raised position relative to the aft end of the truck beam. The landing gear mechanism may also be configured to cooperate with a retraction of the shock strut into the wheel well by extending the truck pitch actuator to position a forward end of the truck beam in a lower position relative to the aft end of the truck beam.Type: GrantFiled: March 24, 2010Date of Patent: May 28, 2013Assignee: The Boeing CompanyInventors: Mitchell L. Mellor, Michael A. Long, Richard B. Odell
-
Patent number: 8340892Abstract: An onboard system and method for determining the instantaneous weight and balance of an aircraft simply, reliably, accurately, and requiring a minimum amount of calibration includes a memory for storing previously determined breakout friction data of the aircraft's landing gear shock struts, sensors for sensing the pressures in the struts, the vertical loads exerted by the landing gear on the aircraft, and the attitude of the aircraft relative to the horizontal during loading or unloading thereof, and a computer for computing the vertical load in each of the landing gears from the stored calibration breakout friction data and the shock strut pressures, landing gear vertical loads and aircraft attitude sensed during the loading or unloading. The computer then computes the gross weight of the aircraft and the location of its center of gravity (CG) using the computed vertical loads in the landing gears.Type: GrantFiled: November 19, 2010Date of Patent: December 25, 2012Assignee: The Boeing CompanyInventors: Michael A. Long, Geoffrey E. Gouette
-
Patent number: 8177800Abstract: A method for removing a vein includes making an incision through a skin layer of a patient, inserting a surgical instrument through the incision, visualizing the vein through the skin layer using a light source positioned subcutaneously and in proximity of the vein, and cutting the vein using the surgical instrument. The vein can be visualized by directing light from the light source at the vein from underneath the vein or from a side of the vein. A device for illuminating a body structure has a housing with a distal end configured for subcutaneous insertion into a patient's tissue and positioning in proximity of the body structure, a light path supported by the housing and configured for directing light at the body structure, and a fluid line supported by the housing.Type: GrantFiled: February 24, 2006Date of Patent: May 15, 2012Assignee: InaVein LLCInventors: Gregory A. Spitz, Douglas D. Sjostrom, Alexander D. Grinberg, Michael A. Long
-
Publication number: 20110248009Abstract: A wireless controller (14) comprises a housing including a first portion (20a) and a second portion (20b) moveably attached to the first portion (20a). The first portion (20a) supports the controller (14) relative to an external surface and is adjustable between an elevated position and a collapsed position, wherein a first end of the first portion (20a) is elevated relative to a second end of the first portion (20a) when the first portion is in the elevated position. A sensing element (22) senses a position of the second portion (20b) relative to the first portion (20a) and provides a corresponding position signal. A transmitter (24) is coupled with the sensing element (22) and wirelessly transmits the position signal.Type: ApplicationFiled: June 21, 2011Publication date: October 13, 2011Applicant: FREEDOM SPECIAL TECHNOLOGIES, INC.Inventors: Michael A. Long, Hermann Brian Falter, Hans Noack
-
Publication number: 20110248008Abstract: A wireless controller (14) comprises a housing including a first portion (20a) and a second portion (20b) moveably attached to the first portion (20a). The first portion (20a) supports the controller (14) relative to an external surface and is adjustable between an elevated position and a collapsed position, wherein a first end of the first portion (20a) is elevated relative to a second end of the first portion (20a) when the first portion is in the elevated position. A sensing element (22) senses a position of the second portion (20b) relative to the first portion (20a) and provides a corresponding position signal. A transmitter (24) is coupled with the sensing element (22) and wirelessly transmits the position signal.Type: ApplicationFiled: June 21, 2011Publication date: October 13, 2011Applicant: Freedom Special Technologies, Inc.Inventors: Michael A. Long, Hermann Brian Falter, Hans Noack