Patents by Inventor Michael A. Moffitt

Michael A. Moffitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11801389
    Abstract: A neuromodulation customization system includes a field definition user interface, a neuromodulation signaling engine, and a supervisor engine. The field definition user interface is to facilitate entry of a customized electrotherapy field definition, with the field definition user interface including a set of input controls for defining field shape, field intensity, and field steering parameters of the customized electrotherapy field. The neuromodulation signaling engine is to produce commands for neuromodulation output circuitry to control generation of a customized electrotherapy field via a set of electrodes based on the customized electrotherapy field definition. The supervisor engine is to assess compliance of the customized electrotherapy field to be generated with applicable predefined criteria, and to modify generation of the customized electrotherapy field in response to an assessed non-compliance with the criteria.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: October 31, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dheerendra Raghavendra Kashyap, Sarvani Grandhe, Natalie A. Brill, Bradley Lawrence Hershey, Changfang Zhu, Sridhar Kothandaraman, Dennis Zottola, Michael A. Moffitt
  • Patent number: 11794021
    Abstract: An implantable medical device is configured to receive an input that specifies a time domain allocation between two or more stored stimulation programs and to provide control signals corresponding to each of the two or more stimulation programs to stimulation circuitry to interleave the two or more stimulation programs in time according to the input. The time domain allocation may set a proportion of time during which each of the stimulation programs is active during repeating epochs. The time domain allocation may be set by a user to transition between configured stimulation programs or to specify stimulation that is based on two or more different stimulation programs. The time domain allocation may also be adjusted automatically to optimize an indication of an effectiveness of stimulation that is provided by the patient.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 24, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael Moffitt
  • Patent number: 11771918
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor coupled to the memory and configured for receiving a request for verification or measurement of a light output value; in response to the request, receiving, from the light monitor, a measurement of light generated by the light source; and, based on the measurement, reporting a response to the request.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: October 3, 2023
    Assignees: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (“CEA”)
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, John Rivera, Claude Chabrol, Sarah Renault, Adrien Poizat, Michael A. Moffitt
  • Publication number: 20230285753
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 11752348
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: September 12, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Publication number: 20230277849
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Publication number: 20230256249
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 17, 2023
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Publication number: 20230218908
    Abstract: A system and method for selecting leadwire stimulation parameters includes a processor iteratively performing, for each of a plurality of values for a particular stimulation parameter, each value corresponding to a respective current field: (a) shifting the current field longitudinally and/or rotationally to a respective plurality of locations about the leadwire; and (b) for each of the respective plurality of locations, obtaining clinical effect information regarding a respective stimulation of the patient tissue produced by the respective current field at the respective location; and displaying a graph plotting the clinical effect information against values for the particular stimulation parameter and locations about the leadwire, and/or based on the obtained clinical effect information, identifying an optimal combination of a selected value for the particular stimulation parameter and selected location about the leadwire at which to perform a stimulation using the selected value.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 13, 2023
    Inventors: Stephen Carcieri, Dean Chen, Michael A. Moffitt
  • Publication number: 20230218903
    Abstract: A system can utilize interleaving periods or waveforms to stimulate patient tissue and sense signals using the stimulation electrodes. For example, the system can utilize alternating therapeutic periods and sensing periods. As another example, the system can alternate between biphasic waveforms having opposite temporal orders of positive and negative phases. As another example, waveforms that differ in a parameter, such as amplitude or pulse width, can be interleaved to provide different information in the respective sensed signals.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 13, 2023
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Michael A. Moffitt
  • Patent number: 11691012
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 11666761
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: June 6, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Patent number: 11654285
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: May 23, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 11648403
    Abstract: An electrical stimulation system for use with a plurality of electrodes implanted within a tissue region comprises a neurostimulator configured for delivering electrical stimulation energy to the plurality of electrodes in accordance with a set of stimulation parameters, thereby injecting a charge into the tissue region, a control device configured for receiving user input to modify the set of stimulation parameters, and controller/processor circuitry configured for, in response to the user input computing a charge injection metric value as a function of a physical electrode parameter and an electrical source parameter for a first set of the electrodes, wherein the electrode set comprises at least two electrodes, comparing the computed charge injection metric value to a safety threshold value, and performing a corrective action based on the comparison.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: May 16, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Gustav Karl Steinke, Michael A. Moffitt
  • Patent number: 11633608
    Abstract: A system and method for selecting leadwire stimulation parameters includes a processor iteratively performing, for each of a plurality of values for a particular stimulation parameter, each value corresponding to a respective current field: (a) shifting the current field longitudinally and/or rotationally to a respective plurality of locations about the leadwire; and (b) for each of the respective plurality of locations, obtaining clinical effect information regarding a respective stimulation of the patient tissue produced by the respective current field at the respective location; and displaying a graph plotting the clinical effect information against values for the particular stimulation parameter and locations about the leadwire, and/or based on the obtained clinical effect information, identifying an optimal combination of a selected value for the particular stimulation parameter and selected location about the leadwire at which to perform a stimulation using the selected value.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: April 25, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Dean Chen, Michael A. Moffitt
  • Publication number: 20230123406
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Patent number: 11623095
    Abstract: A system can utilize interleaving periods or waveforms to stimulate patient tissue and sense signals using the stimulation electrodes. For example, the system can utilize alternating therapeutic periods and sensing periods. As another example, the system can alternate between biphasic waveforms having opposite temporal orders of positive and negative phases. As another example, waveforms that differ in a parameter, such as amplitude or pulse width, can be interleaved to provide different information in the respective sensed signals.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: April 11, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Michael A. Moffitt
  • Patent number: 11602635
    Abstract: A computer implemented system and method facilitates a cycle of generation, sharing, and refinement of volumes related to stimulation of anatomical tissue, such as brain or spinal cord stimulation. Such volumes can include target stimulation volumes, side effect volumes, and volumes of estimated activation. A computer system and method also facilitates analysis of groups of volumes, including analysis of differences and/or commonalities between different groups of volumes.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: March 14, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Hemant Bokil, Stephen Carcieri, Keith R. Carlton, Michael A. Moffitt, Peter J. Yoo
  • Publication number: 20230064552
    Abstract: Methods and systems for providing peripheral nerve stimulation are disclosed. Stimulation is delivered to a trunk of the nerve using electrodes configured at different circumferential locations about the nerve. Action potentials evoked by the stimulation within branches of the nerve are measured to map neural element within the trunk to the branches. The mapping can inform the selection of stimulation parameters that provide a therapeutic benefit and/or avoid unwanted side effects.
    Type: Application
    Filed: February 2, 2021
    Publication date: March 2, 2023
    Inventor: Michael Moffitt
  • Patent number: 11583684
    Abstract: Methods and systems can facilitate visualizing cathodic and anodic stimulation separately via displaying and modifying graphical representations of anodic and cathodic volumes of activation. Alternately, the methods and systems may separately visualize stimulation of different neural elements, such as nerve fibers and neural cells. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: February 21, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Vikrant Venkateshwar Gunna Srinivasan, Chirag Shah, Peter J. Yoo, Michael A. Moffitt, Sridhar Kothandaraman
  • Publication number: 20230045684
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Application
    Filed: October 27, 2022
    Publication date: February 9, 2023
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri